Suppr超能文献

转录时钟与非转录时钟:以莱茵衣藻为例的研究

Transcriptional versus non-transcriptional clocks: a case study in Ostreococcus.

作者信息

Bouget François-Yves, Lefranc Marc, Thommen Quentin, Pfeuty Benjamin, Lozano Jean-Claude, Schatt Philippe, Botebol Hugo, Vergé Valérie

机构信息

Sorbonne Universités, Université Pierre et Marie Curie (Paris 06), Observatoire Océanologique, F-66651 Banyuls/Mer, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche, UMR7621, LOMIC, Laboratoire d'Océanographie Microbienne, F-66651 Banyuls/Mer, France.

Laboratoire de Physique des Lasers, Atomes et Molécules, Université Lille 1, CNRS, Unité Mixte de Recherche 8523, Unité de Formation et de Recherche de Physique, Villeneuve d'Ascq, France.

出版信息

Mar Genomics. 2014 Apr;14:17-22. doi: 10.1016/j.margen.2014.01.004. Epub 2014 Feb 7.

Abstract

Circadian rhythms are ubiquitous on earth from cyanobacteria to land plants and animals. Circadian clocks are synchronized to the day/night cycle by environmental factors such as light and temperature. In eukaryotes, clocks rely on complex gene regulatory networks involving transcriptional regulation but also post-transcriptional and post-translational regulations. In multicellular organisms clocks are found at multiple levels from cells to organs and whole organisms, making the study of clock mechanisms more complex. In recent years the picoalga Ostreococcus has emerged as a new circadian model organism thanks to its reduced gene redundancy and its minimalist cellular organization. A simplified version of the "green" plant clock, involving the master clock genes TOC1 and CCA1, has been revealed when the functional genomics and mathematical model approaches were combined. Specific photoreceptors such as a blue light sensing LOV histidine kinase mediate light input to the Ostreococcus clock. Non-transcriptional redox rhythms have also been identified recently in Ostreococcus and human red blood cells. This review highlights the progress made recently in the understanding of circadian clock architecture and function in Ostreococcus in the context of the marine environment.

摘要

从蓝细菌到陆地植物和动物,昼夜节律在地球上无处不在。昼夜节律钟通过光和温度等环境因素与昼夜循环同步。在真核生物中,生物钟依赖于复杂的基因调控网络,这些网络不仅涉及转录调控,还包括转录后和翻译后调控。在多细胞生物中,生物钟存在于从细胞到器官及整个生物体的多个层面,这使得对生物钟机制的研究更加复杂。近年来,皮氏衣藻因其基因冗余度降低和细胞结构简单,成为一种新的昼夜节律模式生物。当功能基因组学和数学模型方法相结合时,揭示了一个简化版的“绿色”植物生物钟,其中涉及主生物钟基因TOC1和CCA1。特定的光感受器,如蓝光感应LOV组氨酸激酶,介导光信号输入到皮氏衣藻生物钟。最近在皮氏衣藻和人类红细胞中也发现了非转录氧化还原节律。本综述重点介绍了在海洋环境背景下,近年来在理解皮氏衣藻生物钟结构和功能方面取得的进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验