Tallur Siddharth, Bhave Sunil A
Opt Express. 2013 Nov 18;21(23):27780-8. doi: 10.1364/OE.21.027780.
Finite photon lifetimes for light fields in an opto-mechanical cavity impose a bandwidth limit on displacement sensing at mechanical resonance frequencies beyond the loaded cavity photon decay rate. Opto-mechanical modulation efficiency can be enhanced via multi-GHz transduction techniques such as piezo-opto-mechanics at the cost of on-chip integration. In this paper, we present a novel high bandwidth displacement sense scheme employing Rayleigh scattering in photonic resonators. Using this technique in conjunction with on-chip electrostatic drive in silicon enables efficient modulation at frequencies up to 9.1GHz. Being independent of the drive mechanism, this scheme could readily be extended to piezo-opto-mechanical and all optical transduced systems.