Epilepsy and Headache Group, Department of Neurology, The First Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, China.
Neuromolecular Med. 2014 Jun;16(2):457-72. doi: 10.1007/s12017-014-8293-y. Epub 2014 Feb 13.
To address the role of the transforming growth factor beta (TGFβ)-Smad3 signaling pathway in dendrite growth and associated synaptogenesis, we used small inhibitory RNA to knockdown the Smad3 gene in either cultured neurons and or primary astrocytes. We found that TGFβ1 treatment of primary neurons increased dendrite extensions and the number of synapsin-1-positive synapses. When Smad3 was knockdown in primary neurons, dendrite growth was inhibited and the number of synapsin-1-positive synapses reduced even with TGFβ1 treatment. When astrocyte-conditioned medium (ACM), collected from TGFβ1-treated astrocytes (TGFβ1-stimulated ACM), was added to cultured neurons, dendritic growth was inhibited and the number of synapsin-1-positive puncta reduced. When TGFβ1-stimulated ACM was collected from astrocytes with Smad3 knocked down, this conditioned media promoted the growth of dendrites and the number of synapsin-1-positive puncta in cultured neurons. We further found that TGFβ1 signaling through Smad3 increased the expression of chondroitin sulfate proteoglycans, neurocan, and phosphacan in ACM. Application of chondroitinase ABC to the TGFβ1-stimulated ACM reversed its inhibitory effects on the dendrite growth and the number of synapsin-1-positive puncta. On the other hand, we found that TGFβ1 treatment caused a facilitation of Smad3 phosphorylation and translocation to the nucleus induced by status epilepticus (SE) in wild-type (Smad3(+/+)) mice, and this treatment also caused a promotion of γ-aminobutyric acid-ergic synaptogenesis impaired by SE in Smad3(+/+) as well as in Smad3(-/-) mice, but more dramatic promotion in Smad3(+/+) mice. Thus, we provide evidence for the first time that TGFβ-Smad3 signaling pathways within neuron and astrocyte differentially regulate dendrite growth and synaptogenesis, and this pathway may be involved in the pathogenesis of some central nervous system diseases, such as epilepsy.
为了研究转化生长因子β(TGFβ)-Smad3 信号通路在树突生长和相关突触发生中的作用,我们使用小干扰 RNA 敲低培养神经元和/或原代星形胶质细胞中的 Smad3 基因。我们发现,TGFβ1 处理原代神经元可增加树突延伸和突触素-1 阳性突触的数量。当 Smad3 在原代神经元中被敲低时,即使给予 TGFβ1 处理,树突生长也受到抑制,突触素-1 阳性突触的数量也减少。当星形胶质细胞条件培养基(ACM)从 TGFβ1 处理的星形胶质细胞(TGFβ1 刺激的 ACM)中收集时,培养神经元的树突生长受到抑制,突触素-1 阳性斑点的数量减少。当 Smad3 敲低的星形胶质细胞中收集 TGFβ1 刺激的 ACM 时,这种条件培养基促进了培养神经元中树突的生长和突触素-1 阳性斑点的数量。我们进一步发现,TGFβ1 通过 Smad3 信号增加了 ACM 中软骨素蛋白聚糖、神经钙黏蛋白和磷蛋白聚糖的表达。应用软骨素酶 ABC 处理 TGFβ1 刺激的 ACM 可逆转其对树突生长和突触素-1 阳性斑点数量的抑制作用。另一方面,我们发现,TGFβ1 处理可促进野生型(Smad3(+/+))小鼠癫痫发作(SE)诱导的 Smad3 磷酸化和核转位,并且这种处理还促进了 SE 导致的 Smad3(+/+)和 Smad3(-/-)小鼠中γ-氨基丁酸能突触发生受损的恢复,但在 Smad3(+/+)小鼠中更为显著。因此,我们首次提供证据表明,神经元和星形胶质细胞中的 TGFβ-Smad3 信号通路可差异调节树突生长和突触发生,该通路可能参与某些中枢神经系统疾病(如癫痫)的发病机制。