Suppr超能文献

集体疏散中行为决策动态的测量与建模

Measuring and modeling behavioral decision dynamics in collective evacuation.

作者信息

Carlson Jean M, Alderson David L, Stromberg Sean P, Bassett Danielle S, Craparo Emily M, Guiterrez-Villarreal Francisco, Otani Thomas

机构信息

Department of Physics, University of California Santa Barbara, Santa Barbara, California, United States of America.

Naval Postgraduate School, Monterey, California, United States of America.

出版信息

PLoS One. 2014 Feb 10;9(2):e87380. doi: 10.1371/journal.pone.0087380. eCollection 2014.

Abstract

Identifying and quantifying factors influencing human decision making remains an outstanding challenge, impacting the performance and predictability of social and technological systems. In many cases, system failures are traced to human factors including congestion, overload, miscommunication, and delays. Here we report results of a behavioral network science experiment, targeting decision making in a natural disaster. In a controlled laboratory setting, our results quantify several key factors influencing individual evacuation decision making in a controlled laboratory setting. The experiment includes tensions between broadcast and peer-to-peer information, and contrasts the effects of temporal urgency associated with the imminence of the disaster and the effects of limited shelter capacity for evacuees. Based on empirical measurements of the cumulative rate of evacuations as a function of the instantaneous disaster likelihood, we develop a quantitative model for decision making that captures remarkably well the main features of observed collective behavior across many different scenarios. Moreover, this model captures the sensitivity of individual- and population-level decision behaviors to external pressures, and systematic deviations from the model provide meaningful estimates of variability in the collective response. Identification of robust methods for quantifying human decisions in the face of risk has implications for policy in disasters and other threat scenarios, specifically the development and testing of robust strategies for training and control of evacuations that account for human behavior and network topologies.

摘要

识别和量化影响人类决策的因素仍然是一项重大挑战,这会影响社会和技术系统的性能及可预测性。在许多情况下,系统故障可追溯到人为因素,包括拥堵、过载、沟通不畅和延误。在此,我们报告一项行为网络科学实验的结果,该实验针对自然灾害中的决策制定。在可控的实验室环境中,我们的结果量化了影响个体疏散决策的几个关键因素。该实验涵盖了广播信息与对等信息之间的紧张关系,并对比了与灾难迫近相关的时间紧迫性的影响以及疏散避难所容量有限的影响。基于对疏散累积率作为即时灾难可能性函数的实证测量,我们开发了一个决策定量模型,该模型能很好地捕捉在许多不同场景下观察到的集体行为的主要特征。此外,该模型捕捉了个体和群体层面决策行为对外部压力的敏感性,并且与该模型的系统偏差为集体反应的变异性提供了有意义的估计。识别面对风险时量化人类决策的可靠方法对灾害及其他威胁场景中的政策具有影响,特别是对考虑人类行为和网络拓扑结构的疏散培训与控制的稳健策略的开发和测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3349/3919722/0dbe82318fd9/pone.0087380.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验