Suppr超能文献

从全基因组分析看细菌 GlxRS 的进化观点:GluRS2 是嵌合体吗?

Evolutionary insights about bacterial GlxRS from whole genome analyses: is GluRS2 a chimera?

机构信息

Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India.

出版信息

BMC Evol Biol. 2014 Feb 12;14:26. doi: 10.1186/1471-2148-14-26.

Abstract

BACKGROUND

Evolutionary histories of glutamyl-tRNA synthetase (GluRS) and glutaminyl-tRNA synthetase (GlnRS) in bacteria are convoluted. After the divergence of eubacteria and eukarya, bacterial GluRS glutamylated both tRNAGln and tRNAGlu until GlnRS appeared by horizontal gene transfer (HGT) from eukaryotes or a duplicate copy of GluRS (GluRS2) that only glutamylates tRNAGln appeared. The current understanding is based on limited sequence data and not always compatible with available experimental results. In particular, the origin of GluRS2 is poorly understood.

RESULTS

A large database of bacterial GluRS, GlnRS, tRNAGln and the trimeric aminoacyl-tRNA-dependent amidotransferase (gatCAB), constructed from whole genomes by functionally annotating and classifying these enzymes according to their mutual presence and absence in the genome, was analyzed. Phylogenetic analyses showed that the catalytic and the anticodon-binding domains of functional GluRS2 (as in Helicobacter pylori) were independently acquired from evolutionarily distant hosts by HGT. Non-functional GluRS2 (as in Thermotoga maritima), on the other hand, was found to contain an anticodon-binding domain appended to a gene-duplicated catalytic domain. Several genomes were found to possess both GluRS2 and GlnRS, even though they share the common function of aminoacylating tRNAGln. GlnRS was widely distributed among bacterial phyla and although phylogenetic analyses confirmed the origin of most bacterial GlnRS to be through a single HGT from eukarya, many GlnRS sequences also appeared with evolutionarily distant phyla in phylogenetic tree. A GlnRS pseudogene could be identified in Sorangium cellulosum.

CONCLUSIONS

Our analysis broadens the current understanding of bacterial GlxRS evolution and highlights the idiosyncratic evolution of GluRS2. Specifically we show that: i) GluRS2 is a chimera of mismatching catalytic and anticodon-binding domains, ii) the appearance of GlnRS and GluRS2 in a single bacterial genome indicating that the evolutionary histories of the two enzymes are distinct, iii) GlnRS is more widespread in bacteria than is believed, iv) bacterial GlnRS appeared both by HGT from eukarya and intra-bacterial HGT, v) presence of GlnRS pseudogene shows that many bacteria could not retain the newly acquired eukaryal GlnRS. The functional annotation of GluRS, without recourse to experiments, performed in this work, demonstrates the inherent and unique advantages of using whole genome over isolated sequence databases.

摘要

背景

细菌中谷氨酰-tRNA 合成酶(GluRS)和谷氨酰胺-tRNA 合成酶(GlnRS)的进化历史错综复杂。在真核生物和细菌分化之后,细菌的 GluRS 使 tRNAGln 和 tRNAGlu 都发生了谷氨酸化,直到 GlnRS 通过从真核生物的水平基因转移(HGT)或 GluRS 的重复拷贝(仅使 tRNAGln 发生谷氨酸化的 GluRS2)出现。目前的认识是基于有限的序列数据,并不总是与可用的实验结果相匹配。特别是,GluRS2 的起源还没有被很好地理解。

结果

通过功能注释和根据基因组中这些酶的相互存在和缺失对它们进行分类,构建了一个由细菌 GluRS、GlnRS、tRNAGln 和三联体氨酰-tRNA 依赖的转酰胺酶(gatCAB)的全基因组组成的大型数据库。系统发育分析表明,功能上的 GluRS2 的催化和反密码子结合结构域(如幽门螺杆菌)是通过 HGT 从进化上遥远的宿主中独立获得的。另一方面,非功能的 GluRS2(如 Thermotoga maritima)被发现含有一个反密码子结合结构域,附加在一个基因复制的催化结构域上。发现一些基因组既拥有 GluRS2 又拥有 GlnRS,尽管它们具有使 tRNAGln 发生氨酰化的共同功能。GlnRS 在细菌门中广泛分布,尽管系统发育分析证实了大多数细菌 GlnRS 是通过从真核生物的单一 HGT 产生的,但许多 GlnRS 序列也在系统发育树中与进化上遥远的门出现。在 Sorangium cellulosum 中可以识别出 GlnRS 假基因。

结论

我们的分析拓宽了对细菌 GlxRS 进化的现有认识,并强调了 GluRS2 的特殊进化。具体而言,我们表明:i)GluRS2 是不匹配的催化和反密码子结合结构域的嵌合体,ii)单个细菌基因组中 GlnRS 和 GluRS2 的出现表明两种酶的进化历史是不同的,iii)GlnRS 在细菌中比人们想象的更为广泛,iv)细菌 GlnRS 既通过从真核生物的 HGT 出现,也通过细菌内的 HGT 出现,v)GlnRS 假基因的存在表明,许多细菌无法保留新获得的真核 GlnRS。在这项工作中,不依赖实验对 GluRS 进行功能注释,展示了使用全基因组而不是孤立的序列数据库的固有和独特优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a4b/3927822/943004c3981e/1471-2148-14-26-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验