Suppr超能文献

一种对tRNA(Glu)特异的C端截短型谷氨酰胺-tRNA合成酶受其游离互补远端结构域的刺激:机制及进化意义

A C-truncated glutamyl-tRNA synthetase specific for tRNA(Glu) is stimulated by its free complementary distal domain: mechanistic and evolutionary implications.

作者信息

Dubois Daniel Y, Blais Sébastien P, Huot Jonathan L, Lapointe Jacques

机构信息

Regroupement quebecois de Recherche sur la Fonction, la Structure et l'Ingenierie des Proteines (PROTEO), Departement de Biochimie et de Microbiologie, Universite Laval, Quebec, Quebec, Canada G1K 7P4.

出版信息

Biochemistry. 2009 Jun 30;48(25):6012-21. doi: 10.1021/bi801690f.

Abstract

Faithful translation of the genetic code is mainly based on the specificity of tRNA aminoacylation catalyzed by aminoacyl-tRNA synthetases. These enzymes are comprised of a catalytic core and several appended domains. Bacterial glutamyl-tRNA synthetases (GluRS) contain five structural domains, the two distal ones interacting with the anticodon arm of tRNA(Glu). Thermus thermophilus GluRS requires the presence of tRNA(Glu) to bind ATP in the proper site for glutamate activation. In order to test the role of these two distal domains in this mechanism, we characterized the in vitro properties of the C-truncated Escherichia coli GluRSs N(1-313) and N(1-362), containing domains 1-3 and 1-4, respectively, and of their N-truncated complements GluRSs C(314-471) (containing domains 4 and 5) and C(363-471) (free domain 5). These C-truncated GluRSs are soluble, aminoacylate specifically tRNA(Glu), and require the presence of tRNA(Glu) to catalyze the activation of glutamate, as does full-length GluRS(1-471). The k(cat) of tRNA glutamylation catalyzed by N(1-362) is about 2000-fold lower than that catalyzed by the full-length E. coli GluRS(1-471). The addition of free domain 5 (C(363-471)) to N(1-362) strongly stimulates this k(cat) value, indicating that covalent connectivity between N(1-362) and domain 5 is not required for GluRS activity; the hyperbolic relationship between domain 5 concentration and this stimulation indicates that these proteins and tRNA(Glu) form a productive complex with a K(d) of about 100 microM. The K(d) values of tRNA(Glu) interactions with the full-length GluRS and with the truncated GluRSs N(1-362) and free domain 5 are 0.48, 0.11, and about 1.2 microM, respectively; no interaction was detected between these two complementary truncated GluRSs. These results suggest that in the presence of these truncated GluRSs, tRNA(Glu) is positioned for efficient aminoacylation by the two following steps: first, it interacts with GluRS N(1-362) via its acceptor-TPsiC stem loop domain and then with free domain 5 via its anticodon-Dstem-biloop domain, which appeared later during evolution. On the other hand, tRNA glutamylation catalyzed by N(1-313) is not stimulated by its complement C(314-471), revealing the importance of the covalent connectivity between domains 3 and 4 for GluRS aminoacylation activity. The K(m) values of N(1-313) and N(1-362) for each of their substrates are similar to those of full-length GluRS. These C-truncated GluRSs recognize only tRNA(Glu). These results confirm the modular nature of GluRS and support the model of a "recent" fusion of domains 4 and 5 to a proto-GluRS containing the catalytic domain and able to recognize its tRNA substrate(s).

摘要

遗传密码的忠实翻译主要基于氨酰 - tRNA合成酶催化的tRNA氨酰化特异性。这些酶由一个催化核心和几个附加结构域组成。细菌谷氨酰胺 - tRNA合成酶(GluRS)包含五个结构域,最外侧的两个结构域与tRNA(Glu)的反密码子臂相互作用。嗜热栖热菌GluRS需要tRNA(Glu)的存在才能将ATP结合在谷氨酸激活的合适位点。为了测试这两个最外侧结构域在该机制中的作用,我们表征了截短C端的大肠杆菌GluRSs N(1 - 313)和N(1 - 362)的体外性质,它们分别包含结构域1 - 3和1 - 4,以及它们截短N端的互补片段GluRSs C(314 - 471)(包含结构域4和5)和C(363 - 471)(游离的结构域5)。这些截短C端的GluRSs是可溶的,能特异性地使tRNA(Glu)氨酰化,并且像全长GluRS(1 - 471)一样,需要tRNA(Glu)的存在来催化谷氨酸的激活。N(1 - 362)催化tRNA谷氨酰化的k(cat)值比全长大肠杆菌GluRS(1 - 471)催化的低约2000倍。向N(1 - 362)中添加游离的结构域5(C(363 - 471))强烈刺激了这个k(cat)值,表明N(1 - 362)和结构域5之间的共价连接对于GluRS活性不是必需的;结构域5浓度与这种刺激之间的双曲线关系表明,这些蛋白质和tRNA(Glu)形成了一种具有约100 microM解离常数(K(d))的有效复合物。tRNA(Glu)与全长GluRS以及截短的GluRSs N(1 - 362)和游离结构域5的相互作用的K(d)值分别为0.48、0.11和约1.2 microM;在这两个互补的截短GluRSs之间未检测到相互作用。这些结果表明,在存在这些截短的GluRSs的情况下,tRNA(Glu)通过以下两个步骤定位以进行有效的氨酰化:首先,它通过其受体 - TPsiC茎环结构域与GluRS N(1 - 362)相互作用,然后通过其反密码子 - D茎 - 双环结构域与游离结构域5相互作用,后者是在进化后期出现的。另一方面,N(1 - 313)催化的tRNA谷氨酰化不受其互补片段C(314 - 471)的刺激,这揭示了结构域3和4之间的共价连接对于GluRS氨酰化活性的重要性。N(1 - 313)和N(1 - 362)对其各自底物的K(m)值与全长GluRS的相似。这些截短C端的GluRSs仅识别tRNA(Glu)。这些结果证实了GluRS的模块化性质,并支持了结构域4和5“近期”融合到一个包含催化结构域并能够识别其tRNA底物的原始GluRS的模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验