Suppr超能文献

溴分子在石墨烯上的物理吸附和电荷转移。

Physical adsorption and charge transfer of molecular Br2 on graphene.

机构信息

Department of Chemistry, ‡Department of Applied Physics and Applied Mathematics, §Department of Mechanical Engineering, and ⊥Department of Electrical Engineering, Columbia University , New York, New York 10027, United States.

出版信息

ACS Nano. 2014 Mar 25;8(3):2943-50. doi: 10.1021/nn500265f. Epub 2014 Feb 17.

Abstract

We present a detailed study of gaseous Br2 adsorption and charge transfer on graphene, combining in situ Raman spectroscopy and density functional theory (DFT). When graphene is encapsulated by hexagonal boron nitride (h-BN) layers on both sides, in a h-BN/graphene/h-BN sandwich structure, it is protected from doping by strongly oxidizing Br2. Graphene supported on only one side by h-BN shows strong hole doping by adsorbed Br2. Using Raman spectroscopy, we determine the graphene charge density as a function of pressure. DFT calculations reveal the variation in charge transfer per adsorbed molecule as a function of coverage. The molecular adsorption isotherm (coverage versus pressure) is obtained by combining Raman spectra with DFT calculations. The Fowler-Guggenheim isotherm fits better than the Langmuir isotherm. The fitting yields the adsorption equilibrium constant (∼0.31 Torr(-1)) and repulsive lateral interaction (∼20 meV) between adsorbed Br2 molecules. The Br2 molecule binding energy is ∼0.35 eV. We estimate that at monolayer coverage each Br2 molecule accepts 0.09 e- from single-layer graphene. If graphene is supported on SiO2 instead of h-BN, a threshold pressure is observed for diffusion of Br2 along the (somewhat rough) SiO2/graphene interface. At high pressure, graphene supported on SiO2 is doped by adsorbed Br2 on both sides.

摘要

我们结合原位拉曼光谱和密度泛函理论(DFT),对气态 Br2 在石墨烯上的吸附和电荷转移进行了详细研究。当石墨烯被两侧的六方氮化硼(h-BN)层包裹在 h-BN/石墨烯/h-BN 夹层结构中时,它就不会被强氧化性的 Br2 掺杂。仅由 h-BN 支撑在一侧的石墨烯显示出吸附 Br2 引起的强烈空穴掺杂。我们使用拉曼光谱来确定石墨烯的电荷密度随压力的变化。DFT 计算揭示了每个吸附分子的电荷转移随覆盖率的变化。通过将拉曼光谱与 DFT 计算相结合,获得了分子吸附等温线(覆盖率与压力的关系)。Fowler-Guggenheim 等温线比 Langmuir 等温线拟合得更好。拟合得出吸附平衡常数(∼0.31 Torr(-1))和吸附 Br2 分子之间的排斥横向相互作用(∼20 meV)。Br2 分子的结合能约为 0.35 eV。我们估计,在单层覆盖时,每个 Br2 分子从单层石墨烯中接受 0.09 e-。如果石墨烯不是支撑在 h-BN 上,而是支撑在 SiO2 上,那么 Br2 就会沿着(有些粗糙的)SiO2/石墨烯界面扩散。在高压下,支撑在 SiO2 上的石墨烯在两侧都被吸附的 Br2 掺杂。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验