Suppr超能文献

氟化石墨烯和六方氮化硼作为基于石墨烯的范德华异质结构的原子层沉积(ALD)种子层。

Fluorinated graphene and hexagonal boron nitride as ALD seed layers for graphene-based van der Waals heterostructures.

机构信息

Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China.

出版信息

Nanotechnology. 2014 Sep 5;25(35):355202. doi: 10.1088/0957-4484/25/35/355202. Epub 2014 Aug 12.

Abstract

Ultrathin dielectric materials prepared by atomic-layer-deposition (ALD) technology are commonly used in graphene electronics. Using the first-principles density functional theory calculations with van der Waals (vdW) interactions included, we demonstrate that single-side fluorinated graphene (SFG) and hexagonal boron nitride (h-BN) exhibit large physical adsorption energy and strong electrostatic interactions with H2O-based ALD precursors, indicating their potential as the ALD seed layer for dielectric growth on graphene. In graphene-SFG vdW heterostructures, graphene is n-doped after ALD precursor adsorption on the SFG surface caused by vertical intrinsic polarization of SFG. However, graphene-h-BN vdW heterostructures help preserving the intrinsic characteristics of the underlying graphene due to in-plane intrinsic polarization of h-BN. By choosing SFG or BN as the ALD seed layer on the basis of actual device design needs, the graphene vdW heterostructures may find applications in low-dimensional electronics.

摘要

采用包含范德华(vdW)相互作用的第一性原理密度泛函理论计算,我们证明了单侧氟化石墨烯(SFG)和六方氮化硼(h-BN)与基于 H2O 的原子层沉积(ALD)前驱体具有较大的物理吸附能和强静电相互作用,表明它们有可能成为在石墨烯上生长介电层的 ALD 种子层。在石墨烯-SFG vdW 异质结构中,ALD 前驱体在 SFG 表面上的吸附导致 SFG 的垂直本征极化,从而使石墨烯 n 掺杂。然而,由于 h-BN 的面内本征极化,石墨烯-h-BN vdW 异质结构有助于保持底层石墨烯的本征特性。根据实际器件设计需求,选择 SFG 或 BN 作为 ALD 种子层,石墨烯 vdW 异质结构可能在低维电子学中得到应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验