Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China.
Nanotechnology. 2014 Sep 5;25(35):355202. doi: 10.1088/0957-4484/25/35/355202. Epub 2014 Aug 12.
Ultrathin dielectric materials prepared by atomic-layer-deposition (ALD) technology are commonly used in graphene electronics. Using the first-principles density functional theory calculations with van der Waals (vdW) interactions included, we demonstrate that single-side fluorinated graphene (SFG) and hexagonal boron nitride (h-BN) exhibit large physical adsorption energy and strong electrostatic interactions with H2O-based ALD precursors, indicating their potential as the ALD seed layer for dielectric growth on graphene. In graphene-SFG vdW heterostructures, graphene is n-doped after ALD precursor adsorption on the SFG surface caused by vertical intrinsic polarization of SFG. However, graphene-h-BN vdW heterostructures help preserving the intrinsic characteristics of the underlying graphene due to in-plane intrinsic polarization of h-BN. By choosing SFG or BN as the ALD seed layer on the basis of actual device design needs, the graphene vdW heterostructures may find applications in low-dimensional electronics.
采用包含范德华(vdW)相互作用的第一性原理密度泛函理论计算,我们证明了单侧氟化石墨烯(SFG)和六方氮化硼(h-BN)与基于 H2O 的原子层沉积(ALD)前驱体具有较大的物理吸附能和强静电相互作用,表明它们有可能成为在石墨烯上生长介电层的 ALD 种子层。在石墨烯-SFG vdW 异质结构中,ALD 前驱体在 SFG 表面上的吸附导致 SFG 的垂直本征极化,从而使石墨烯 n 掺杂。然而,由于 h-BN 的面内本征极化,石墨烯-h-BN vdW 异质结构有助于保持底层石墨烯的本征特性。根据实际器件设计需求,选择 SFG 或 BN 作为 ALD 种子层,石墨烯 vdW 异质结构可能在低维电子学中得到应用。