Department of Polymer Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, UTM 81310, Skudai, Johor, Malaysia; School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia.
Department of Polymer Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, UTM 81310, Skudai, Johor, Malaysia.
Carbohydr Polym. 2014 Mar 15;103:119-25. doi: 10.1016/j.carbpol.2013.11.055. Epub 2013 Dec 6.
The objective of this study is to compare the effect of two different isolation techniques on the physico-chemical and thermal properties of cellulose nanowhiskers (CNW) from oil palm biomass obtained microcrystalline cellulose (MCC). Fourier transform infrared analysis showed that there are no significant changes in the peak positions, suggesting that the treatments did not affect the chemical structure of the cellulose fragment. Scanning electron microscopy showed that the aggregated structure of MCC is broken down after treatment. Transmission electron microscopy revealed that the produced CNW displayed a nanoscale structure. X-ray diffraction analysis indicated that chemical swelling improves the crystallinity of MCC while maintaining the cellulose I structure. Acid hydrolysis however reduced the crystallinity of MCC and displayed the coexistence of cellulose I and II allomorphs. The produced CNW is shown to have a good thermal stability and hence is suitable for a range of applications such as green biodegradable nanocomposites reinforced with CNW.
本研究旨在比较两种不同的分离技术对从微结晶纤维素 (MCC) 获得的油棕生物质纤维素纳米纤维 (CNW) 的物理化学和热性能的影响。傅里叶变换红外分析表明,峰位没有明显变化,表明处理不影响纤维素片段的化学结构。扫描电子显微镜显示 MCC 的聚集结构在处理后被破坏。透射电子显微镜显示所制备的 CNW 呈现纳米级结构。X 射线衍射分析表明,化学溶胀提高了 MCC 的结晶度,同时保持了纤维素 I 结构。然而,酸水解降低了 MCC 的结晶度,并显示出纤维素 I 和 II 同素异形物的共存。所制备的 CNW 表现出良好的热稳定性,因此适用于一系列应用,如用 CNW 增强的绿色可生物降解纳米复合材料。