通过气相扩散在从芒果废料中获得的细菌纤维素膜上实现纳米晶磷灰石的可控结晶
Controlled Crystallization of Nanocrystalline Apatite via Vapor Diffusion on Bacterial Cellulose Membranes Obtained from Mango Waste.
作者信息
Navarro-Zabarburú Isabel, Zavaleta Amparo Iris, Calderón-Toledo Susana, Gómez-Morales Jaime, Alvarez-Lloret Pedro
机构信息
Laboratory of Molecular Biology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima 506, Peru.
Laboratory of Crystallographic Studies, IACT-CSIC, Avda. Las Palmeras 4, E-18100 Armilla, Spain.
出版信息
Cryst Growth Des. 2025 Aug 8;25(16):6575-6586. doi: 10.1021/acs.cgd.5c00437. eCollection 2025 Aug 20.
Hybrid bacterial cellulose (BC)-calcium phosphate apatite (Ap) composite was successfully synthesized via the sitting drop vapor diffusion crystallization method. The BC matrix was produced using the bacterial strain sp. SU12 cultured in a medium derived from mango juice waste, underscoring a sustainable strategy for biopolymer production. The resulting BC-Ap composite exhibited plate-like apatite crystals, as confirmed by X-ray diffraction analyses, which were heterogeneously distributed on the BC matrix and coupled to the nanocellulose surface fibers. An increase in mineral content in the BC-Ap composites over the experimental reaction times (1-15 days) was observed by thermogravimetry analyses. Spectroscopic analyses confirmed the presence of characteristic BC functional groups (e.g., hydroxyl and carboxylate), and the vibrational modes associated with phosphate (ν-ν of PO ), corroborating the formation of apatite within the BC-Ap material. These findings suggest that the vapor diffusion crystallization method is an effective approach for the controlled mineralization of BC nanofibers with nanocrystalline apatite, yielding a bioinspired material with promising potential application in bone tissue engineering. Additionally, the use of mango-processing waste as a carbon source for BC production offers a sustainable and cost-efficient alternative, supporting the advancement of green technology and biocompatible routes for material design.
通过静置滴液气相扩散结晶法成功合成了混合细菌纤维素(BC)-磷酸钙磷灰石(Ap)复合材料。BC基质是使用在源自芒果汁废料的培养基中培养的细菌菌株sp. SU12生产的,这突出了生物聚合物生产的可持续策略。X射线衍射分析证实,所得的BC-Ap复合材料呈现出板状磷灰石晶体,它们不均匀地分布在BC基质上,并与纳米纤维素表面纤维相连。通过热重分析观察到,在实验反应时间(1 - 15天)内,BC-Ap复合材料中的矿物质含量增加。光谱分析证实了BC特征官能团(如羟基和羧酸盐)的存在,以及与磷酸盐相关的振动模式(PO的ν-ν),证实了BC-Ap材料中磷灰石的形成。这些发现表明,气相扩散结晶法是一种用纳米晶磷灰石对BC纳米纤维进行可控矿化的有效方法,可产生一种在骨组织工程中有潜在应用前景的仿生材料。此外,使用芒果加工废料作为BC生产的碳源提供了一种可持续且经济高效的替代方案,支持绿色技术和生物相容性材料设计路线的发展。