Suppr超能文献

Presynaptic K-channel blockade counteracts the depressant effect of adenosine in olfactory cortex.

作者信息

Scholfield C N, Steel L

机构信息

Physiology Department, Queen's University, Belfast, U.K.

出版信息

Neuroscience. 1988 Jan;24(1):81-91. doi: 10.1016/0306-4522(88)90313-2.

Abstract

Slices of isolated olfactory cortex from guinea-pig have been used to study the action of adenosine at synapses between axons of the lateral olfactory tract and neurons in the olfactory cortex. Adenosine depressed the excitatory postsynaptic potential, and, with paired or multiple stimuli, the reduced excitatory postsynaptic potentials in adenosine showed more synaptic facilitation. Very small excitatory postsynaptic potentials which were estimated not to be affected by postsynaptic membrane conductance changes were highly sensitive to adenosine. Both observations indicate a presynaptic action of adenosine. To test whether a conductance increase to potassium ions mediated adenosine action, the K-channel blockers, 3,4-diaminopyridine (1-100 mumol/l) or 4-aminopyridine (100-500 mumol/l) were applied or Cs partially substituted for K. These substances reduced or prevented adenosine from having its depressant effect on synaptic transmission. These particular K-channel blockers also prolonged the action potential propagating along the lateral olfactory tract. When the increased excitability was counteracted by high Mg or low concentrations of tetrodotoxin, 3,4-diaminopyridine still blocked adenosine action. UO2 ions prolonged the lateral olfactory tract action potential without blockade of K-conductance, but still supported an adenosine depression of the excitatory postsynaptic potential. Veratridine also supported the adenosine depression. These observations suggest that the action of 3,4-diaminopyridine on adenosine was not solely the result of increased tissue excitability. In contrast, tetraethylammonium (20 mmol/l), Ba (0.5-4 mmol/l) or Rb replacement for K had a negligible effect on the duration of the presynaptic action potential and had no effect on the depressant action of adenosine. These data are compatible with the idea that adenosine enhances an aminopyridine-sensitive potassium conductance in nerve terminals and changes in Ca influx are consequential to this.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验