Paquete Catarina M, Saraiva Ivo H, Louro Ricardo O
Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República - EAN, 2780-157 Oeiras, Portugal.
Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República - EAN, 2780-157 Oeiras, Portugal.
Biochim Biophys Acta. 2014 Jun;1837(6):717-25. doi: 10.1016/j.bbabio.2014.02.006. Epub 2014 Feb 14.
Many enzymes involved in bioenergetic processes contain chains of redox centers that link the protein surface, where interaction with electron donors or acceptors occurs, to a secluded catalytic site. In numerous cases these redox centers can transfer only single electrons even when they are associated to catalytic sites that perform two-electron chemistry. These chains provide no obvious contribution to enhance chemiosmotic energy conservation, and often have more redox centers than those necessary to hold sufficient electrons to sustain one catalytic turnover of the enzyme. To investigate the role of such a redox chain we analyzed the transient kinetics of fumarate reduction by two flavocytochromes c3 of Shewanella species while these enzymes were being reduced by sodium dithionite. These soluble monomeric proteins contain a chain of four hemes that interact with a flavin adenine dinucleotide (FAD) catalytic center that performs the obligatory two electron-two proton reduction of fumarate to succinate. Our results enabled us to parse the kinetic contribution of each heme towards electron uptake and conduction to the catalytic center, and to determine that the rate of fumarate reduction is modulated by the redox stage of the enzyme, which is defined by the number of reduced centers. In both enzymes the catalytically most competent redox stages are those least prevalent in a quasi-stationary condition of turnover. Furthermore, the electron distribution among the redox centers during turnover suggested how these enzymes can play a role in the switch between respiration of solid and soluble terminal electron acceptors in the anaerobic bioenergetic metabolism of Shewanella.
许多参与生物能量过程的酶都含有氧化还原中心链,这些链将与电子供体或受体发生相互作用的蛋白质表面连接到一个隐蔽的催化位点。在许多情况下,即使这些氧化还原中心与进行双电子化学反应的催化位点相关联,它们也只能转移单个电子。这些链对增强化学渗透能量守恒没有明显贡献,而且其氧化还原中心的数量往往多于维持酶的一次催化周转所需的足够电子的数量。为了研究这种氧化还原链的作用,我们分析了希瓦氏菌属的两种黄素细胞色素c3在连二亚硫酸钠还原这些酶时富马酸盐还原的瞬态动力学。这些可溶性单体蛋白含有一条由四个血红素组成的链,该链与一个黄素腺嘌呤二核苷酸(FAD)催化中心相互作用,该催化中心将富马酸盐强制进行双电子 - 双质子还原为琥珀酸盐。我们的结果使我们能够解析每个血红素对电子摄取和传导至催化中心的动力学贡献,并确定富马酸盐还原的速率受酶的氧化还原状态调节,该氧化还原状态由还原中心的数量定义。在这两种酶中,催化活性最高的氧化还原状态在周转的准稳态条件下是最不普遍存在的。此外,周转过程中氧化还原中心之间的电子分布表明了这些酶如何在希瓦氏菌的厌氧生物能量代谢中参与固态和可溶性末端电子受体呼吸之间的转换。