Suppr超能文献

固定在电极表面的延胡索酸还原酶的可逆电化学。氧化还原中心的直接伏安观察及其在快速催化电子传递中的作用。

Reversible electrochemistry of fumarate reductase immobilized on an electrode surface. Direct voltammetric observations of redox centers and their participation in rapid catalytic electron transport.

作者信息

Sucheta A, Cammack R, Weiner J, Armstrong F A

机构信息

Department of Chemistry, University of California, Irvine 92717.

出版信息

Biochemistry. 1993 May 25;32(20):5455-65. doi: 10.1021/bi00071a023.

Abstract

Fumarate reductase (Escherichia coli) can be immobilized in an extremely electroactive state at an electrode, with retention of native catalytic properties. The membrane-extrinsic FrdAB component adsorbs to monolayer coverage at edge-oriented pyrolytic graphite and catalyzes reduction of fumarate or oxidation of succinate, depending upon the electrode potential. In the absence of substrates, reversible redox transformations of centers in the enzyme are observed by cyclic voltammetry. The major component of the voltammograms is a pair of narrow reduction and oxidation signals corresponding to a pH-sensitive couple with formal reduction potential E degree' = -48 mV vs SHE at pH 7.0 (25 degrees C). This is assigned to two-electron reduction and oxidation of the active-site FAD. A redox couple with E degree' = -311 mV at pH 7 is assigned to center 2 ([4Fe-4S]2+/1+). Voltammograms for fumarate reduction at 25 degrees C, measured with a rotating-disk electrode, show high catalytic activity without the low-potential switch-off that is observed for the related enzyme succinate dehydrogenase. The catalytic electrochemistry is interpreted in terms of a basic model incorporating mass transport of substrate, interfacial electron transfer, and intrinsic kinetic properties of the enzyme, each of these becoming a rate-determining factor under certain conditions. Electrochemical reversibility is approached under conditions of low turnover rate, for example, as the supply of substrate to the active site is limited. In this situation, electrocatalytic half-wave potentials, E1/2, are similar for oxidation of bulk succinate and reduction of bulk fumarate and coincide closely with the E degree' value assigned to the FAD. At 25 degrees C and pH 7, the apparent KM for fumarate reduction is 0.16 mM, and kcat is 840 s-1. Accordingly the second-order rate constant, kcat/KM, is 5.3 x 10(6) M-1 s-1. Under the same conditions, oxidation of succinate is much slower. As the supply of fumarate to the enzyme is raised to increase turnover, the electrochemical reaction eventually becomes limited by the rate of electron transfer from the electrode. Under these conditions a second catalytic wave becomes evident, the E1/2 value of which corresponds to the reduction potential of the redox couple suggested to be center 2. This small boost to the catalytic current indicates that the low-potential [4Fe-4S] cluster can function as a second center for relaying electrons to the FAD.

摘要

富马酸还原酶(大肠杆菌)可在电极上以极高的电活性状态固定化,并保留其天然催化特性。膜外在成分FrdAB以单层覆盖的形式吸附在边缘取向的热解石墨上,并根据电极电位催化富马酸的还原或琥珀酸的氧化。在没有底物的情况下,通过循环伏安法可观察到酶中中心的可逆氧化还原转变。伏安图的主要成分是一对狭窄的还原和氧化信号,对应于一个对pH敏感的电对,在pH 7.0(25℃)时相对于标准氢电极的形式还原电位E°' = -48 mV。这被归因于活性位点FAD的双电子还原和氧化。在pH 7时E°' = -311 mV的氧化还原电对被归因于中心2([4Fe-4S]2+/1+)。用旋转圆盘电极在25℃下测量的富马酸还原伏安图显示出高催化活性,没有观察到相关酶琥珀酸脱氢酶所具有的低电位关闭现象。催化电化学是根据一个基本模型来解释的,该模型包括底物的质量传输、界面电子转移和酶的内在动力学性质,在某些条件下,这些因素中的每一个都成为速率决定因素。在低周转率的条件下,例如当活性位点的底物供应受到限制时,接近电化学可逆性。在这种情况下,本体琥珀酸氧化和本体富马酸还原的电催化半波电位E1/2相似,并且与分配给FAD的E°'值非常接近。在25℃和pH 7时,富马酸还原的表观KM为0.16 mM,kcat为840 s-1。因此,二级速率常数kcat/KM为5.3×10(6) M-1 s-1。在相同条件下,琥珀酸的氧化要慢得多。随着向酶供应的富马酸增加以提高周转率,电化学反应最终受到电极电子转移速率的限制。在这些条件下,第二个催化波变得明显,其E1/2值对应于被认为是中心2的氧化还原电对的还原电位。催化电流的这种小幅度增加表明低电位的[4Fe-4S]簇可以作为将电子传递给FAD的第二个中心发挥作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验