Malaguti Giulia, Singh Param Priya, Isambert Hervé
Institut Curie, CNRS-UMR168, UPMC, 26 rue d'Ulm, 75005 Paris, France.
Institut Curie, CNRS-UMR168, UPMC, 26 rue d'Ulm, 75005 Paris, France.
Theor Popul Biol. 2014 May;93:38-51. doi: 10.1016/j.tpb.2014.01.004. Epub 2014 Feb 12.
Recent studies have shown that gene families from different functional categories have been preferentially expanded either by small scale duplication (SSD) or by whole-genome duplication (WGD). In particular, gene families prone to dominant deleterious mutations and implicated in cancers and other genetic diseases in human have been greatly expanded through two rounds of WGD dating back from early vertebrates. Here, we strengthen this intriguing observation, showing that human oncogenes involved in different primary tumors have retained many WGD duplicates compared to other human genes. In order to rationalize this evolutionary outcome, we propose a consistent population genetics model to analyze the retention of SSD and WGD duplicates taking into account their propensity to acquire dominant deleterious mutations. We solve a deterministic haploid model including initial duplicated loci, their retention through sub-functionalization or their neutral loss-of-function or deleterious gain-of-function at one locus. Extensions to diploid genotypes are presented and population size effects are analyzed using stochastic simulations. The only difference between the SSD and WGD scenarios is the initial number of individuals with duplicated loci. While SSD duplicates need to spread through the entire population from a single individual to reach fixation, WGD duplicates are de facto fixed in the small initial post-WGD population arising through the ploidy incompatibility between post-WGD individuals and the rest of the pre-WGD population. WGD duplicates prone to dominant deleterious mutations are then shown to be indirectly selected through purifying selection in post-WGD species, whereas SSD duplicates typically require positive selection. These results highlight the long-term evolution mechanisms behind the surprising accumulation of WGD duplicates prone to dominant deleterious mutations and are shown to be consistent with cancer genome data on the prevalence of human oncogenes with WGD duplicates.
最近的研究表明,来自不同功能类别的基因家族通过小规模复制(SSD)或全基因组复制(WGD)实现了优先扩张。特别是,那些容易发生显性有害突变且与人类癌症及其他遗传疾病相关的基因家族,通过两轮可追溯至早期脊椎动物的全基因组复制得到了极大的扩张。在此,我们强化了这一有趣的观察结果,表明与其他人类基因相比,参与不同原发性肿瘤的人类癌基因保留了许多全基因组复制的重复基因。为了合理解释这一进化结果,我们提出了一个一致的群体遗传学模型,以分析小规模复制和全基因组复制重复基因的保留情况,同时考虑它们获得显性有害突变的倾向。我们求解了一个确定性单倍体模型,该模型包括初始的重复基因座、它们通过亚功能化的保留情况,或者它们在一个基因座上的中性功能丧失或有害功能获得情况。我们还给出了对二倍体基因型的扩展,并使用随机模拟分析了群体大小效应。小规模复制和全基因组复制情况之间的唯一区别在于具有重复基因座的个体的初始数量。虽然小规模复制的重复基因需要从单个个体传播到整个人群才能达到固定状态,但全基因组复制的重复基因实际上在全基因组复制后因全基因组复制后个体与全基因组复制前人群其余部分之间的倍性不相容而产生的小初始群体中就已固定。结果表明,容易发生显性有害突变的全基因组复制重复基因随后通过全基因组复制后物种中的纯化选择而被间接选择,而小规模复制的重复基因通常需要正选择。这些结果突出了容易发生显性有害突变的全基因组复制重复基因惊人积累背后的长期进化机制,并表明与关于具有全基因组复制重复基因的人类癌基因流行情况的癌症基因组数据一致。