Suppr超能文献

⁶⁴Cu 标记的前列腺特异性膜抗原抑制剂用于前列腺癌的 PET 成像。

⁶⁴Cu-labeled inhibitors of prostate-specific membrane antigen for PET imaging of prostate cancer.

机构信息

Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions , 1550 Orleans Street, Baltimore, Maryland 21287, United States.

出版信息

J Med Chem. 2014 Mar 27;57(6):2657-69. doi: 10.1021/jm401921j. Epub 2014 Mar 7.

Abstract

Prostate-specific membrane antigen (PSMA) is a well-recognized target for identification and therapy of a variety of cancers. Here we report five (64)Cu-labeled inhibitors of PSMA, [(64)Cu]3-7, which are based on the lysine-glutamate urea scaffold and utilize a variety of macrocyclic chelators, namely NOTA(3), PCTA(4), Oxo-DO3A(5), CB-TE2A(6), and DOTA(7), in an effort to determine which provides the most suitable pharmacokinetics for in vivo PET imaging. [(64)Cu]3-7 were prepared in high radiochemical yield (60-90%) and purity (>95%). Positron emission tomography (PET) imaging studies of [(64)Cu]3-7 revealed specific accumulation in PSMA-expressing xenografts (PSMA+ PC3 PIP) relative to isogenic control tumor (PSMA- PC3 flu) and background tissue. The favorable kinetics and high image contrast provided by CB-TE2A chelated [(64)Cu]6 suggest it as the most promising among the candidates tested. That could be due to the higher stability of [(64)Cu]CB-TE2A as compared with [(64)Cu]NOTA, [(64)Cu]PCTA, [(64)Cu]Oxo-DO3A, and [(64)Cu]DOTA chelates in vivo.

摘要

前列腺特异性膜抗原(PSMA)是鉴定和治疗多种癌症的公认靶标。在这里,我们报告了五种(64)Cu 标记的 PSMA 抑制剂 [(64)Cu]3-7,它们基于赖氨酸-谷氨酸脲支架,并利用各种大环螯合剂,即 NOTA(3)、PCTA(4)、Oxo-DO3A(5)、CB-TE2A(6)和 DOTA(7),以确定哪种提供最适合体内 PET 成像的药代动力学。[(64)Cu]3-7 的制备具有高放射化学产率(60-90%)和纯度(>95%)。[(64)Cu]3-7 的正电子发射断层扫描(PET)成像研究表明,与同基因对照肿瘤(PSMA-PC3 flu)和背景组织相比,在表达 PSMA 的异种移植(PSMA+PC3 PIP)中特异性积累。CB-TE2A 螯合的[(64)Cu]6 提供的有利动力学和高图像对比度表明,它是测试候选物中最有前途的一种。这可能是由于与 NOTA、PCTA、Oxo-DO3A 和 DOTA 螯合物相比,[(64)Cu]CB-TE2A 在体内具有更高的稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6cd/3983358/603b88aa53a2/jm-2013-01921j_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验