Center for Applied Mathematics, Ecole Polytechnique, Palaiseau, Essonne, France.
Ecol Lett. 2014 Apr;17(4):508-25. doi: 10.1111/ele.12251. Epub 2014 Feb 7.
Estimating rates of speciation and extinction, and understanding how and why they vary over evolutionary time, geographical space and species groups, is a key to understanding how ecological and evolutionary processes generate biological diversity. Such inferences will increasingly benefit from phylogenetic approaches given the ever-accelerating rates of genetic sequencing. In the last few years, models designed to understand diversification from phylogenetic data have advanced significantly. Here, I review these approaches and what they have revealed about diversification in the natural world. I focus on key distinctions between different models, and I clarify the conclusions that can be drawn from each model. I identify promising areas for future research. A major challenge ahead is to develop models that more explicitly take into account ecology, in particular the interaction of species with each other and with their environment. This will not only improve our understanding of diversification; it will also present a new perspective to the use of phylogenies in community ecology, the science of interaction networks and conservation biology, and might shift the current focus in ecology on equilibrium biodiversity theories to non-equilibrium theories recognising the crucial role of history.
估计物种形成和灭绝的速度,了解它们在进化时间、地理空间和物种群体中是如何以及为什么变化的,是理解生态和进化过程如何产生生物多样性的关键。鉴于遗传测序的速度不断加快,这些推断将越来越得益于系统发育方法。在过去的几年中,旨在从系统发育数据中理解多样化的模型有了显著的进展。在这里,我回顾了这些方法以及它们对自然界多样化的揭示。我专注于不同模型之间的关键区别,并阐明了每个模型可以得出的结论。我确定了未来研究的有前途的领域。未来的一个主要挑战是开发更明确地考虑生态学的模型,特别是考虑物种之间以及它们与环境之间的相互作用。这不仅将提高我们对多样化的理解;它还将为在群落生态学、相互作用网络科学和保护生物学中使用系统发育提供一个新的视角,并可能将当前生态学中对平衡生物多样性理论的关注转移到承认历史的关键作用的非平衡理论上。