Kirsch G E, Yatani A, Codina J, Birnbaumer L, Brown A M
Department of Physiology, Baylor College of Medicine, Houston, Texas 77030.
Am J Physiol. 1988 Jun;254(6 Pt 2):H1200-5. doi: 10.1152/ajpheart.1988.254.6.H1200.
A specific guanine nucleotide-binding protein, Gk, is the link by which muscarinic receptors activate atrial potassium channels (Science Wash. DC 235: 207-211, 1987). In adult guinea pigs, the alpha-subunit at picomolar concentrations mediates the holo-G protein effect (Science Wash. DC 236: 442-445, 1987), but in chick embryo it has been reported that the beta gamma-dimer at nanomolar concentrations rather than the alpha-subunit is the effective mediator (Nature Lond. 325: 321-326, 1987). This difference might have a phylogenetic or ontogenetic basis, and the present experiments tested these possibilities. Preactivated alpha k derived from human red blood cell Gk, when applied to the intracellular surface of inside-out membrane patches from the atria of embryonic chick, neonatal rat, and adult guinea pig activated single K+ channel currents. In each case, the alpha k-activated channels had the same single-channel conductance and mean open time as the muscarinic agonist-activated channels. Half-maximal activation was achieved at alpha k-concentrations of 2.4-13.8 pM. Hence, alpha k-activation of these K+ channels is independent of differences in age or species. The detergent 3-[3-cholamidopropyl)-dimethyammoniol]-1-propanesulfonate (CHAPS), which was used by Logothetis et al. (Nature Lond. 325: 321-326, 1987) at 184 microM to suspend the hydrophobic beta gamma-dimers, activated the same currents. We conclude that the effects of the beta gamma-dimer on these K+ channels is unknown and that as we had proposed earlier (Science Wash. DC 236: 442-445, 1987) it is the alpha-subunit that mediates the Gk effect.