Institute of Radiology-Molecular Imaging Group, Charité, Berlin, Germany.
J Nucl Med. 2014 Mar;55(3):508-14. doi: 10.2967/jnumed.113.128108. Epub 2014 Feb 18.
The coupling of polyethylene glycol (PEG) to proteins (PEGylation) has become a standard method to prolong blood circulation of imaging probes and other proteins, liposomes, and nanoparticles. However, concerns have arisen about the safety of PEG, especially with respect to its poor biodegradability and antibody formation, including new evidence about preformed anti-PEG antibodies in a quarter of healthy blood donors. Here, we apply a new hydrophilic polypeptide XTEN to extend the blood half-life of an imaging probe. As an example, we chose annexin A5 (AnxA5), a recombinant 35-kD protein extensively used for the in vitro and in vivo detection of apoptosis, that has a blood half-life of less than 7 min in mice, limiting its accumulation in target tissues and therefore limiting its utility as an imaging reagent.
The sequence of XTEN was developed by Volker Schellenberger and colleagues by evolutionary in vitro optimization to yield PEG-like properties but provides several key advantages in comparison to PEG. The DNA of a 288-amino-acid version of XTEN with an additional N-terminal cysteine for site-directed coupling was fused to AnxA5 (XTEN-AnxA5). The fusion protein could be highly expressed in Escherichia coli and efficiently purified using XTEN conveniently as a purification tag. It was labeled with a thiol-reactive fluorescent dye and via a chelator with a radionuclide.
SPECT/CT imaging revealed a blood half-life of about 1 h in mice, markedly longer than the 7-min blood half-life for unmodified AnxA5, which should allow improved imaging of target tissues with low perfusion. In comparison to AnxA5, XTEN-AnxA5 demonstrated a substantially higher accumulation in tumors under chemotherapy in near-infrared fluorescence imaging.
The presented method allows the expression and production of high amounts of long-circulating XTEN-AnxA5 without the necessity of PEGylation, thereby simplifying the synthesis while avoiding labeling-induced inactivation of AnxA5 and potential adverse effects of PEG. It is readily applicable to other recombinant protein or peptide-based imaging probes and allows fine-tuning of the desired blood half-life, because longer XTEN variants yield longer blood half-lives.
聚乙二醇(PEG)与蛋白质的偶联(PEGylation)已成为延长成像探针和其他蛋白质、脂质体和纳米颗粒的血液循环时间的标准方法。然而,人们对 PEG 的安全性产生了担忧,特别是考虑到其生物降解性差和抗体形成,包括在四分之一的健康献血者中出现预先形成的抗 PEG 抗体的新证据。在这里,我们应用一种新的亲水性多肽 XTEN 来延长成像探针的血液半衰期。例如,我们选择了膜联蛋白 A5(AnxA5),这是一种重组的 35kDa 蛋白,广泛用于体外和体内检测细胞凋亡,但其在小鼠体内的血液半衰期不到 7 分钟,限制了其在靶组织中的积累,从而限制了其作为成像试剂的用途。
XTEN 的序列由 Volker Schellenberger 及其同事通过体外进化优化开发,具有类似 PEG 的特性,但与 PEG 相比具有几个关键优势。带有用于定点偶联的 N 端半胱氨酸的 288 个氨基酸版本的 XTEN 的 DNA 与 AnxA5 融合(XTEN-AnxA5)。该融合蛋白可在大肠杆菌中高效表达,并可方便地使用 XTEN 作为纯化标签进行高效纯化。它用硫醇反应性荧光染料和螯合剂标记放射性核素。
SPECT/CT 成像显示,在小鼠体内的血液半衰期约为 1 小时,明显长于未经修饰的 AnxA5 的 7 分钟血液半衰期,这应该允许对低灌注的靶组织进行更好的成像。与 AnxA5 相比,在近红外荧光成像中,在化疗下,XTEN-AnxA5 在肿瘤中的积累明显更高。
所提出的方法允许在不进行 PEGylation 的情况下表达和生产大量的长循环 XTEN-AnxA5,从而简化了合成过程,同时避免了 AnxA5 的标记诱导失活和 PEG 的潜在不良反应。它可以很容易地应用于其他重组蛋白或基于肽的成像探针,并允许对所需的血液半衰期进行微调,因为较长的 XTEN 变体可产生更长的血液半衰期。