文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

近年来用于高级药物输送的蛋白质和肽基生物材料的趋势。

Recent trends in protein and peptide-based biomaterials for advanced drug delivery.

机构信息

Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.

Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.

出版信息

Adv Drug Deliv Rev. 2020;156:133-187. doi: 10.1016/j.addr.2020.08.008. Epub 2020 Aug 29.


DOI:10.1016/j.addr.2020.08.008
PMID:32871201
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7456198/
Abstract

Engineering protein and peptide-based materials for drug delivery applications has gained momentum due to their biochemical and biophysical properties over synthetic materials, including biocompatibility, ease of synthesis and purification, tunability, scalability, and lack of toxicity. These biomolecules have been used to develop a host of drug delivery platforms, such as peptide- and protein-drug conjugates, injectable particles, and drug depots to deliver small molecule drugs, therapeutic proteins, and nucleic acids. In this review, we discuss progress in engineering the architecture and biological functions of peptide-based biomaterials -naturally derived, chemically synthesized and recombinant- with a focus on the molecular features that modulate their structure-function relationships for drug delivery.

摘要

由于其在生化和物理性质方面优于合成材料,包括生物相容性、易于合成和纯化、可调节性、可扩展性以及缺乏毒性,基于蛋白质和肽的材料在药物输送应用方面的工程设计得到了迅猛发展。这些生物分子已被用于开发多种药物输送平台,如肽和蛋白质-药物偶联物、可注射颗粒和药物库,以输送小分子药物、治疗性蛋白质和核酸。在这篇综述中,我们讨论了工程设计基于肽的生物材料(天然衍生的、化学合成的和重组的)的结构和生物学功能方面的进展,重点是调节其结构-功能关系以用于药物输送的分子特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/33869c3f9c76/gr27_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/6c094904f6a1/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/f1c81c264b50/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/c3836c1b689e/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/cc0c2979c6ec/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/a990276d654a/gr5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/16875d610dd0/gr6_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/bbf670dbf5e9/gr7_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/8bc35e4e0263/gr8_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/ff99d5b6bf33/gr9_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/08438150f512/gr10_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/791a5de93fb9/gr11_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/2f97ae72db6c/gr12_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/7a8d06f2880a/gr13_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/f8abe01f3527/gr14_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/2be89b5b8bb8/gr15_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/da9fab4dca82/gr16_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/826926dab0e0/gr17_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/c4939375e197/gr18_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/18e1837ff628/gr19_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/171c98b83974/gr20_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/7a2dac779f31/gr21_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/bdb7c96ef743/gr22_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/ba34754344ca/gr23_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/c10535ef5868/gr24_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/9ed66da96bba/gr25_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/4ec6c9637d4e/gr26_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/33869c3f9c76/gr27_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/6c094904f6a1/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/f1c81c264b50/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/c3836c1b689e/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/cc0c2979c6ec/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/a990276d654a/gr5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/16875d610dd0/gr6_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/bbf670dbf5e9/gr7_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/8bc35e4e0263/gr8_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/ff99d5b6bf33/gr9_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/08438150f512/gr10_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/791a5de93fb9/gr11_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/2f97ae72db6c/gr12_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/7a8d06f2880a/gr13_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/f8abe01f3527/gr14_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/2be89b5b8bb8/gr15_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/da9fab4dca82/gr16_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/826926dab0e0/gr17_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/c4939375e197/gr18_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/18e1837ff628/gr19_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/171c98b83974/gr20_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/7a2dac779f31/gr21_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/bdb7c96ef743/gr22_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/ba34754344ca/gr23_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/c10535ef5868/gr24_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/9ed66da96bba/gr25_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/4ec6c9637d4e/gr26_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e6/7456198/33869c3f9c76/gr27_lrg.jpg

相似文献

[1]
Recent trends in protein and peptide-based biomaterials for advanced drug delivery.

Adv Drug Deliv Rev. 2020

[2]
Peptide-Based Drug Delivery Systems.

Medicina (Kaunas). 2021-11-5

[3]
Self-assembling peptides as vectors for local drug delivery and tissue engineering applications.

Adv Drug Deliv Rev. 2021-7

[4]
Recombinant protein-based injectable materials for biomedical applications.

Adv Drug Deliv Rev. 2023-2

[5]
Drug Delivery with Designed Peptide Assemblies.

Trends Pharmacol Sci. 2019-9-4

[6]
Silk-elastin-like protein biomaterials for the controlled delivery of therapeutics.

Expert Opin Drug Deliv. 2015-5

[7]
Recent Progress of pH-Responsive Peptides, Polypeptides, and Their Supramolecular Assemblies for Biomedical Applications.

Biomacromolecules. 2024-9-9

[8]
Injectable network biomaterials via molecular or colloidal self-assembly.

Adv Drug Deliv Rev. 2017-11-10

[9]
Genetically Engineered Elastin-based Biomaterials for Biomedical Applications.

Curr Med Chem. 2019

[10]
Recombinant protein polymer-antibody conjugates for applications in nanotechnology and biomedicine.

Adv Drug Deliv Rev. 2022-12

引用本文的文献

[1]
Electrospinning Enables Opportunity for Green and Effective Antibacterial Coatings of Medical Devices.

J Funct Biomater. 2025-7-6

[2]
Amino acid transfer free energies reveal thermodynamic driving forces in biomolecular condensate formation.

Proc Natl Acad Sci U S A. 2025-7-29

[3]
Peptide-Based Biomaterials as a Promising Tool for Cancer Radiotherapy.

Adv Sci (Weinh). 2025-8

[4]
Selective oxidative modification of tryptophan and cysteine residues using visible light responsive Rh doped SrTiO photocatalyst.

Sci Rep. 2025-7-1

[5]
Engineering non-viral protein nanoparticles to deliver nucleic acids and proteins to cells.

Nat Biotechnol. 2025-5-16

[6]
Editorial: Advanced functional materials for disease diagnosis, drug delivery and tissue repair.

Front Bioeng Biotechnol. 2025-4-11

[7]
Preclinical Development of a Genetically Engineered Albumin-Binding Nanoparticle of Paclitaxel.

Small Sci. 2024-9-25

[8]
Biosimilars versus biological therapy in inflammatory bowel disease: challenges and targeting strategies using drug delivery systems.

Clin Exp Med. 2025-4-5

[9]
Anti-Colorectal Cancer Activity of and Its Active Components, Ginsenosides: A Review.

Int J Mol Sci. 2025-3-13

[10]
An update on thermostable keratinases for protein engineering against feather pollutants.

Appl Microbiol Biotechnol. 2025-3-25

本文引用的文献

[1]
Albumin-Polymer-Drug Conjugates: Long Circulating, High Payload Drug Delivery Vehicles.

ACS Macro Lett. 2016-10-18

[2]
Engineering the Architecture of Elastin-Like Polypeptides: From Unimers to Hierarchical Self-Assembly.

Adv Ther (Weinh). 2020-3

[3]
Foams Made of Engineered Recombinant Spider Silk Proteins as 3D Scaffolds for Cell Growth.

ACS Biomater Sci Eng. 2016-4-11

[4]
Injectable Silk Nanofiber Hydrogels for Sustained Release of Small-Molecule Drugs and Vascularization.

ACS Biomater Sci Eng. 2019-8-12

[5]
Development of Gelatin Nanoparticle-Based Biodegradable Phototheranostic Agents: Advanced System to Treat Infectious Diseases.

ACS Biomater Sci Eng. 2018-2-12

[6]
Injectable Carbon Nanotube Impregnated Silk Based Multifunctional Hydrogel for Localized Targeted and On-Demand Anticancer Drug Delivery.

ACS Biomater Sci Eng. 2019-5-13

[7]
Design, Fabrication, and Function of Silk-Based Nanomaterials.

Adv Funct Mater. 2018-12-27

[8]
Collagen-binding IL-12 enhances tumour inflammation and drives the complete remission of established immunologically cold mouse tumours.

Nat Biomed Eng. 2020-4-13

[9]
A CMP-based method for tunable, cell-mediated gene delivery from collagen scaffolds.

J Mater Chem B. 2014-12-14

[10]
Genetically Encoded Stealth Nanoparticles of a Zwitterionic Polypeptide-Paclitaxel Conjugate Have a Wider Therapeutic Window than Abraxane in Multiple Tumor Models.

Nano Lett. 2020-4-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索