Suppr超能文献

基于超维计算的临床缩写词词义消歧

Word Sense Disambiguation of clinical abbreviations with hyperdimensional computing.

作者信息

Moon Sungrim, Berster Bjoern-Toby, Xu Hua, Cohen Trevor

机构信息

The University of Texas School of Biomedical Informatics at Houston, Houston, TX.

Drchrono, Mountain View, CA.

出版信息

AMIA Annu Symp Proc. 2013 Nov 16;2013:1007-16. eCollection 2013.

Abstract

Automated Word Sense Disambiguation in clinical documents is a prerequisite to accurate extraction of medical information. Emerging methods utilizing hyperdimensional computing present new approaches to this problem. In this paper, we evaluate one such approach, the Binary Spatter Code Word Sense Disambiguation algorithm, on 50 ambiguous abbreviation sets derived from clinical notes. This algorithm uses reversible vector transformations to encode ambiguous terms and their context-specific senses into vectors representing surrounding terms. The sense for a new context is then inferred from vectors representing the terms it contains. One-to-one BSC-WSD achieves average accuracy of 94.55% when considering the orientation and distance of neighboring terms relative to the target abbreviation, outperforming Support Vector Machine and Naïve Bayes classifiers. Furthermore, it is practical to deal with all 50 abbreviations in an identical manner using a single one-to-many BSC-WSD model with average accuracy of 93.91%, which is not possible with common machine learning algorithms.

摘要

临床文档中的自动词义消歧是准确提取医学信息的前提条件。利用超维计算的新兴方法为解决这个问题提供了新途径。在本文中,我们在从临床记录中提取的50个歧义缩写集上评估了一种这样的方法,即二进制飞溅码词义消歧算法。该算法使用可逆向量变换将歧义术语及其特定上下文含义编码为表示周围术语的向量。然后从表示新上下文中所包含术语的向量中推断出该上下文的含义。当考虑相邻术语相对于目标缩写的方向和距离时,一对一的二进制飞溅码词义消歧算法的平均准确率达到94.55%,优于支持向量机和朴素贝叶斯分类器。此外,使用单个一对多二进制飞溅码词义消歧模型以相同方式处理所有50个缩写是可行的,平均准确率为93.91%,而这对于常见的机器学习算法来说是不可能的。

相似文献

1
Word Sense Disambiguation of clinical abbreviations with hyperdimensional computing.
AMIA Annu Symp Proc. 2013 Nov 16;2013:1007-16. eCollection 2013.
3
A multi-aspect comparison study of supervised word sense disambiguation.
J Am Med Inform Assoc. 2004 Jul-Aug;11(4):320-31. doi: 10.1197/jamia.M1533. Epub 2004 Apr 2.
4
A Preliminary Study of Clinical Abbreviation Disambiguation in Real Time.
Appl Clin Inform. 2015 Jun 3;6(2):364-74. doi: 10.4338/ACI-2014-10-RA-0088. eCollection 2015.
5
6
Hyperdimensional computing approach to word sense disambiguation.
AMIA Annu Symp Proc. 2012;2012:1129-38. Epub 2012 Nov 3.
7
Collocation analysis for UMLS knowledge-based word sense disambiguation.
BMC Bioinformatics. 2011 Jun 9;12 Suppl 3(Suppl 3):S4. doi: 10.1186/1471-2105-12-S3-S4.
10
Towards Comprehensive Clinical Abbreviation Disambiguation Using Machine-Labeled Training Data.
AMIA Annu Symp Proc. 2017 Feb 10;2016:560-569. eCollection 2016.

引用本文的文献

1
Hyperdimensional computing in biomedical sciences: a brief review.
PeerJ Comput Sci. 2025 May 13;11:e2885. doi: 10.7717/peerj-cs.2885. eCollection 2025.
2
Deciphering Abbreviations in Malaysian Clinical Notes Using Machine Learning.
Methods Inf Med. 2024 Dec;63(5-06):195-202. doi: 10.1055/a-2521-4372. Epub 2025 Jan 22.
4
Deciphering clinical abbreviations with a privacy protecting machine learning system.
Nat Commun. 2022 Dec 2;13(1):7456. doi: 10.1038/s41467-022-35007-9.
5
Automatically disambiguating medical acronyms with ontology-aware deep learning.
Nat Commun. 2021 Sep 7;12(1):5319. doi: 10.1038/s41467-021-25578-4.
6
Symbolic Representation and Learning With Hyperdimensional Computing.
Front Robot AI. 2020 Jun 9;7:63. doi: 10.3389/frobt.2020.00063. eCollection 2020.
7
Towards Comprehensive Clinical Abbreviation Disambiguation Using Machine-Labeled Training Data.
AMIA Annu Symp Proc. 2017 Feb 10;2016:560-569. eCollection 2016.

本文引用的文献

2
Hyperdimensional computing approach to word sense disambiguation.
AMIA Annu Symp Proc. 2012;2012:1129-38. Epub 2012 Nov 3.
4
Evaluation of a method to identify and categorize section headers in clinical documents.
J Am Med Inform Assoc. 2009 Nov-Dec;16(6):806-15. doi: 10.1197/jamia.M3037. Epub 2009 Aug 28.
5
Methods for building sense inventories of abbreviations in clinical notes.
J Am Med Inform Assoc. 2009 Jan-Feb;16(1):103-8. doi: 10.1197/jamia.M2927. Epub 2008 Oct 24.
6
Medical abbreviations: writing little and communicating less.
Arch Dis Child. 2008 Oct;93(10):816-7. doi: 10.1136/adc.2008.141473.
7
A study of abbreviations in clinical notes.
AMIA Annu Symp Proc. 2007 Oct 11;2007:821-5.
8
Word sense disambiguation across two domains: biomedical literature and clinical notes.
J Biomed Inform. 2008 Dec;41(6):1088-100. doi: 10.1016/j.jbi.2008.02.003. Epub 2008 Mar 4.
10
Representing word meaning and order information in a composite holographic lexicon.
Psychol Rev. 2007 Jan;114(1):1-37. doi: 10.1037/0033-295X.114.1.1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验