Workman T Elizabeth, Rosemblat Graciela, Fiszman Marcelo, Rindflesch Thomas C
Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, MD.
AMIA Annu Symp Proc. 2013 Nov 16;2013:1512-21. eCollection 2013.
The semantic relatedness between two concepts, according to human perception, is domain-rooted and reflects prior knowledge. We developed a new method for semantic relatedness assessment that reflects human judgment, utilizing semantic predications extracted from PubMed citations by SemRep. We compared the new method to other approaches utilizing path-based, statistical, and context vector methods, using a gold standard for evaluation. The new method outperformed all others, except one variation of the context vector technique. These findings have implications in several natural language processing applications, such as serendipitous knowledge discovery.
根据人类认知,两个概念之间的语义相关性是基于领域的,并反映了先验知识。我们开发了一种新的语义相关性评估方法,该方法利用SemRep从PubMed引用中提取的语义谓词来反映人类的判断。我们使用评估的黄金标准,将新方法与其他利用基于路径、统计和上下文向量方法的方法进行了比较。除了上下文向量技术的一种变体之外,新方法的表现优于所有其他方法。这些发现对几种自然语言处理应用具有启示意义,例如意外知识发现。