Suppr超能文献

临床术语之间的语义相似性和相关性:一项实验研究。

Semantic Similarity and Relatedness between Clinical Terms: An Experimental Study.

作者信息

Pakhomov Serguei, McInnes Bridget, Adam Terrence, Liu Ying, Pedersen Ted, Melton Genevieve B

机构信息

College of Pharmacy, University of Minnesota, MN, USA.

出版信息

AMIA Annu Symp Proc. 2010 Nov 13;2010:572-6.

Abstract

Automated approaches to measuring semantic similarity and relatedness can provide necessary semantic context information for information retrieval applications and a number of fundamental natural language processing tasks including word sense disambiguation. Challenges for the development of these approaches include the limited availability of validated reference standards and the need for better understanding of the notions of semantic relatedness and similarity in medical vocabulary. We present results of a study in which eight medical residents were asked to judge 724 pairs of medical terms for semantic similarity and relatedness. The results of the study confirm the existence of a measurable mental representation of semantic relatedness between medical terms that is distinct from similarity and independent of the context in which the terms occur. This study produced a validated publicly available dataset for developing automated approaches to measuring semantic relatedness and similarity.

摘要

用于测量语义相似性和相关性的自动化方法可为信息检索应用以及包括词义消歧在内的一些基本自然语言处理任务提供必要的语义上下文信息。开发这些方法面临的挑战包括经过验证的参考标准的可用性有限,以及需要更好地理解医学词汇中语义相关性和相似性的概念。我们展示了一项研究的结果,在该研究中,八名住院医生被要求判断724对医学术语的语义相似性和相关性。该研究结果证实,医学术语之间存在一种可测量的语义相关性心理表征,它与相似性不同,且独立于术语出现的上下文。这项研究产生了一个经过验证的公开可用数据集,用于开发测量语义相关性和相似性的自动化方法。

相似文献

2
Corpus domain effects on distributional semantic modeling of medical terms.
Bioinformatics. 2016 Dec 1;32(23):3635-3644. doi: 10.1093/bioinformatics/btw529. Epub 2016 Aug 16.
4
Use of word and graph embedding to measure semantic relatedness between Unified Medical Language System concepts.
J Am Med Inform Assoc. 2020 Oct 1;27(10):1538-1546. doi: 10.1093/jamia/ocaa136.
5
Evaluating semantic similarity and relatedness over the semantic grouping of clinical term pairs.
J Biomed Inform. 2015 Apr;54:329-36. doi: 10.1016/j.jbi.2014.11.014. Epub 2014 Dec 15.
8
Improving the state-of-the-art in Thai semantic similarity using distributional semantics and ontological information.
PLoS One. 2021 Feb 17;16(2):e0246751. doi: 10.1371/journal.pone.0246751. eCollection 2021.
9
Evaluating measures of semantic similarity and relatedness to disambiguate terms in biomedical text.
J Biomed Inform. 2013 Dec;46(6):1116-24. doi: 10.1016/j.jbi.2013.08.008. Epub 2013 Sep 4.
10
A comparison of word embeddings for the biomedical natural language processing.
J Biomed Inform. 2018 Nov;87:12-20. doi: 10.1016/j.jbi.2018.09.008. Epub 2018 Sep 12.

引用本文的文献

1
CSpace: a concept embedding space for biomedical applications.
Bioinformatics. 2025 Jul 1;41(7). doi: 10.1093/bioinformatics/btaf376.
2
ARCH: Large-scale knowledge graph via aggregated narrative codified health records analysis.
J Biomed Inform. 2025 Feb;162:104761. doi: 10.1016/j.jbi.2024.104761. Epub 2025 Jan 23.
3
Biomedical Text Classification Using Augmented Word Representation Based on Distributional and Relational Contexts.
Comput Intell Neurosci. 2023 Feb 15;2023:2989791. doi: 10.1155/2023/2989791. eCollection 2023.
4
DiSMVC: a multi-view graph collaborative learning framework for measuring disease similarity.
Bioinformatics. 2024 May 2;40(5). doi: 10.1093/bioinformatics/btae306.
5
BioLORD-2023: semantic textual representations fusing large language models and clinical knowledge graph insights.
J Am Med Inform Assoc. 2024 Sep 1;31(9):1844-1855. doi: 10.1093/jamia/ocae029.
7
DapBCH: a disease association prediction model Based on Cross-species and Heterogeneous graph embedding.
Front Genet. 2023 Sep 22;14:1222346. doi: 10.3389/fgene.2023.1222346. eCollection 2023.
8
Quality of word and concept embeddings in targetted biomedical domains.
Heliyon. 2023 Jun 2;9(6):e16818. doi: 10.1016/j.heliyon.2023.e16818. eCollection 2023 Jun.
9
Validating the representation of distance between infarct diseases using word embedding.
BMC Med Inform Decis Mak. 2022 Dec 7;22(1):322. doi: 10.1186/s12911-022-02061-8.
10
Training and intrinsic evaluation of lightweight word embeddings for the clinical domain in Spanish.
Front Artif Intell. 2022 Sep 21;5:970517. doi: 10.3389/frai.2022.970517. eCollection 2022.

本文引用的文献

2
Predicting judged similarity of natural categories from their neural representations.
Neuropsychologia. 2009 Feb;47(3):859-68. doi: 10.1016/j.neuropsychologia.2008.12.029. Epub 2008 Dec 31.
3
Comparison of ontology-based semantic-similarity measures.
AMIA Annu Symp Proc. 2008 Nov 6;2008:384-8.
4
Intraclass correlations: uses in assessing rater reliability.
Psychol Bull. 1979 Mar;86(2):420-8. doi: 10.1037//0033-2909.86.2.420.
5
Predicting human brain activity associated with the meanings of nouns.
Science. 2008 May 30;320(5880):1191-5. doi: 10.1126/science.1152876.
6
A cluster-based approach for semantic similarity in the biomedical domain.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2713-7. doi: 10.1109/IEMBS.2006.259235.
7
Measures of semantic similarity and relatedness in the biomedical domain.
J Biomed Inform. 2007 Jun;40(3):288-99. doi: 10.1016/j.jbi.2006.06.004. Epub 2006 Jun 10.
8
Appraisal of the MedDRA conceptual structure for describing and grouping adverse drug reactions.
Drug Saf. 2005;28(1):19-34. doi: 10.2165/00002018-200528010-00002.
9
Towards the development of a conceptual distance metric for the UMLS.
J Biomed Inform. 2004 Apr;37(2):77-85. doi: 10.1016/j.jbi.2004.02.001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验