Department of Chemistry, ‡Department of Biochemistry and Biophysics, and §Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States.
Biochemistry. 2014 Mar 18;53(10):1601-6. doi: 10.1021/bi4016346. Epub 2014 Mar 3.
Macromolecular crowding effects arise from steric repulsions and weak, nonspecific, chemical interactions. Steric repulsions stabilize globular proteins, but the effect of chemical interactions depends on their nature. Repulsive interactions such as those between similarly charged species should reinforce the effect of steric repulsions, increasing the equilibrium thermodynamic stability of a test protein. Attractive chemical interactions, on the other hand, counteract the effect of hard-core repulsions, decreasing stability. We tested these ideas by using the anionic proteins from Escherichia coli as crowding agents and assessing the stability of the anionic test protein chymotrypsin inhibitor 2 at pH 7.0. The anionic protein crowders destabilize the test protein despite the similarity of their net charges. Thus, weak, nonspecific, attractive interactions between proteins can overcome the charge-charge repulsion and counterbalance the stabilizing effect of steric repulsion.
大分子拥挤效应源于空间位阻排斥和弱、非特异性、化学相互作用。空间位阻排斥稳定球状蛋白质,但化学相互作用的影响取决于其性质。排斥相互作用,如相似电荷物种之间的相互作用,应该增强空间位阻排斥的效应,增加测试蛋白质的平衡热力学稳定性。另一方面,吸引力化学相互作用抵消了硬芯排斥的作用,降低了稳定性。我们使用来自大肠杆菌的阴离子蛋白质作为拥挤剂来检验这些想法,并在 pH 值为 7.0 时评估阴离子测试蛋白胰凝乳蛋白酶抑制剂 2 的稳定性。尽管阴离子蛋白质的净电荷相似,但它们的拥挤剂会使测试蛋白不稳定。因此,蛋白质之间的弱、非特异性、吸引力相互作用可以克服电荷-电荷排斥作用,并平衡空间位阻排斥的稳定作用。