Gehring J M, Cho J-G, Wheatley J R, Amis T C
Ludwig Engel Centre for Respiratory Research, Westmead Millennium Institute, Westmead, NSW, Australia.
Physiol Meas. 2014 Mar;35(3):455-70. doi: 10.1088/0967-3334/35/3/455. Epub 2014 Feb 20.
We examined thermocouple and pressure cannulae responses to oral and nasal airflow using a polyester model of a human face, with patent nasal and oral orifices instrumented with a dual thermocouple (F-ONT2A, Grass) or a dual cannula (0588, Braebon) pressure transducer (± 10 cm H2O, Celesco) system. Tidal airflow was generated using a dual compartment facemask with pneumotachographs (Fleisch 2) connected to the model orifices. During nasal breathing: thermocouple amplitude = 0.38 Ln [pneumotachograph amplitude] + 1.31 and pressure cannula amplitude = 0.93 pneumotachograph amplitude; during oral breathing: thermocouple amplitude = 0.44 Ln [pneumotachograph amplitude] + 1.07 and pressure cannula amplitude = 0.33 pneumotachograph amplitude; (all range ∼ 0.1-∼ 4.0 L s(-1); r(2) > 0.7). For pneumotachograph amplitudes <1 L s(-1) (linear model) change in thermocouple amplitude/unit change in pneumotachograph amplitude was similar for nasal and oral airflow, whereas nasal pressure cannula amplitude/unit change in pneumotachograph amplitude was almost four times that for oral. Increasing oral orifice area from 0.33 cm(2) to 2.15 cm(2) increased oral thermocouple amplitude/unit change in pneumotachograph amplitude by ∼ 58% but decreased pressure cannula amplitude/unit change in pneumotachograph amplitude by 49%. For pneumotachograph amplitudes up to 1 L s(-1), alterations in inspiratory/expiratory ratios or total respiratory time did not affect the sensitivity of either nasal or oral pressure cannulae or the nasal thermocouple, but the oral thermocouple sensitivity was influenced by respiratory cycle time. Different nasal and oral responses influence the ability of these systems to quantitatively assess nasal and oral airflow and oro-nasal airflow partitioning.
我们使用人脸的聚酯模型,通过带有专利鼻口和口腔孔的双热电偶(F-ONT2A,Grass)或双套管(0588,Braebon)压力传感器(±10 cm H2O,Celesco)系统,研究了热电偶和压力套管对口腔和鼻腔气流的反应。使用带有连接到模型孔口的呼吸速度描记器(Fleisch 2)的双腔面罩产生潮气量气流。在鼻腔呼吸期间:热电偶振幅 = 0.38 Ln [呼吸速度描记器振幅] + 1.31,压力套管振幅 = 0.93 呼吸速度描记器振幅;在口腔呼吸期间:热电偶振幅 = 0.44 Ln [呼吸速度描记器振幅] + 1.07,压力套管振幅 = 0.33 呼吸速度描记器振幅;(所有范围约为0.1 - 约4.0 L s(-1);r(2) > 0.7)。对于呼吸速度描记器振幅<1 L s(-1)(线性模型),鼻腔和口腔气流中热电偶振幅/呼吸速度描记器振幅单位变化相似,而鼻腔压力套管振幅/呼吸速度描记器振幅单位变化几乎是口腔的四倍。将口腔孔口面积从0.33 cm(2)增加到2.15 cm(2),口腔热电偶振幅/呼吸速度描记器振幅单位变化增加约58%,但压力套管振幅/呼吸速度描记器振幅单位变化减少49%。对于高达1 L s(-1)的呼吸速度描记器振幅,吸气/呼气比率或总呼吸时间的改变不影响鼻腔或口腔压力套管或鼻腔热电偶的灵敏度,但口腔热电偶灵敏度受呼吸周期时间影响。不同的鼻腔和口腔反应影响这些系统定量评估鼻腔和口腔气流以及口鼻气流分配的能力。