Suppr超能文献

利用现有公共芯片数据的二次利用来预测肝细胞癌的结局。

Secondary use of existing public microarray data to predict outcome for hepatocellular carcinoma.

机构信息

Department of Surgery, University of Texas Medical School at Houston, Houston, Texas.

Department of Surgery, University of Texas Medical School at Houston, Houston, Texas.

出版信息

J Surg Res. 2014 May 1;188(1):137-42. doi: 10.1016/j.jss.2013.12.013. Epub 2014 Jan 6.

Abstract

BACKGROUND

Since 1990, numerous public repositories of microarray data have been created to store vast genomic data sets. Our hypothesis is that a secondary analysis of an available hepatocellular carcinoma (HCC) public data set could generate new findings and additional hypotheses.

METHODS

The Gene Expression Omnibus at the National Center for Biotechnology Information was queried for available data sets specific for 'HCC' and 'clinical data.' Genes that passed filtering and normalization criteria were analyzed using the class comparison and prediction functions in BRB-ArrayTools. Ingenuity pathway analysis software was used to identify potential gene networks up- or down-regulated.

RESULTS

The file GDS274, which measured gene expression in primary HCC lesions with or without hepatic metastases from a cohort of Chinese patients, was identified as an appropriate data set and was imported into BRB-ArrayTools. 9984 genes passed filtering criteria. Clinical data demonstrated alpha fetoprotein (AFP) >100 ng/mL predictive of worse survival (HR 5.87, 95% confidence interval: 1.11-31.0). A class comparison between patients with an AFP >100 and those with AFP <100 demonstrated 92 genes to be differentially expressed. Ingenuity pathway analyses demonstrated the top networks associated with the observed gene expression.

CONCLUSIONS

Using available HCC microarray data, we identified genes differentially expressed based on AFP >100. Canonical pathway analysis demonstrated functional gene pathways and associated upstream regulators. This study maximizes the use of publicly available data by generating new findings. Secondary analyses of these data sets should be considered by investigators before embarking on new genomic experiments.

摘要

背景

自 1990 年以来,已经创建了许多公共的微阵列数据存储库,以存储大量的基因组数据集。我们的假设是,对可用的肝细胞癌(HCC)公共数据集进行二次分析可以产生新的发现和额外的假设。

方法

在国家生物技术信息中心的基因表达综合数据库中,针对“HCC”和“临床数据”查询了可用的数据集。使用 BRB-ArrayTools 中的类比较和预测功能分析通过过滤和标准化标准的基因。使用Ingenuity 通路分析软件来识别潜在的上调或下调的基因网络。

结果

确定了文件 GDS274,该文件测量了来自中国患者队列的原发性 HCC 病变中有无肝转移的基因表达,该文件被确定为合适的数据集并被导入 BRB-ArrayTools。9984 个基因通过了过滤标准。临床数据表明,甲胎蛋白(AFP)> 100ng/mL 可预测生存更差(HR 5.87,95%置信区间:1.11-31.0)。在 AFP > 100 的患者与 AFP < 100 的患者之间进行的类比较显示有 92 个基因差异表达。Ingenuity 通路分析表明,与观察到的基因表达相关的顶级网络。

结论

使用可用的 HCC 微阵列数据,我们根据 AFP > 100 鉴定了差异表达的基因。经典途径分析显示了功能基因途径和相关的上游调节剂。本研究通过生成新的发现最大程度地利用了可用的公共数据。在进行新的基因组实验之前,研究人员应考虑对这些数据集进行二次分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验