Suppr超能文献

使用长读段和统计方法进行全基因组单倍型分型。

Whole-genome haplotyping using long reads and statistical methods.

作者信息

Kuleshov Volodymyr, Xie Dan, Chen Rui, Pushkarev Dmitry, Ma Zhihai, Blauwkamp Tim, Kertesz Michael, Snyder Michael

机构信息

Department of Computer Science, Stanford University, Stanford, CA 94305, USA.

Illumina, Inc., 5200 Illumina Way, San Diego, CA 92199, USA.

出版信息

Nat Biotechnol. 2014 Mar;32(3):261-266. doi: 10.1038/nbt.2833. Epub 2014 Feb 23.

Abstract

The rapid growth of sequencing technologies has greatly contributed to our understanding of human genetics. Yet, despite this growth, mainstream technologies have not been fully able to resolve the diploid nature of the human genome. Here we describe statistically aided, long-read haplotyping (SLRH), a rapid, accurate method that uses a statistical algorithm to take advantage of the partially phased information contained in long genomic fragments analyzed by short-read sequencing. For a human sample, as little as 30 Gbp of additional sequencing data are needed to phase genotypes identified by 50× coverage whole-genome sequencing. Using SLRH, we phase 99% of single-nucleotide variants in three human genomes into long haplotype blocks 0.2-1 Mbp in length. We apply our method to determine allele-specific methylation patterns in a human genome and identify hundreds of differentially methylated regions that were previously unknown. SLRH should facilitate population-scale haplotyping of human genomes.

摘要

测序技术的快速发展极大地促进了我们对人类遗传学的理解。然而,尽管有了这样的发展,主流技术仍未能完全解析人类基因组的二倍体性质。在此,我们描述了统计辅助长读单倍型分型(SLRH),这是一种快速、准确的方法,它使用统计算法来利用短读测序分析的长基因组片段中包含的部分定相信息。对于一个人类样本,通过50×覆盖度全基因组测序鉴定的基因型进行定相,仅需30 Gbp的额外测序数据。使用SLRH,我们将三个人类基因组中99%的单核苷酸变异定相成长度为0.2 - 1 Mbp的长单倍型块。我们应用我们的方法来确定人类基因组中的等位基因特异性甲基化模式,并识别出数百个以前未知的差异甲基化区域。SLRH应该会促进人类基因组的群体规模单倍型分型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验