Ishihara Shinsuke, Labuta Jan, Van Rossom Wim, Ishikawa Daisuke, Minami Kosuke, Hill Jonathan P, Ariga Katsuhiko
World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
Phys Chem Chem Phys. 2014 Jun 7;16(21):9713-46. doi: 10.1039/c3cp55431g. Epub 2014 Feb 24.
Porphyrins and related families of molecules are important organic modules as has been reflected in the award of the Nobel Prizes in Chemistry in 1915, 1930, 1961, 1962, 1965, and 1988 for work on porphyrin-related biological functionalities. The porphyrin core can be synthetically modified by introduction of various functional groups and other elements, allowing creation of numerous types of porphyrin derivatives. This feature makes porphyrins extremely useful molecules especially in combination with their other interesting photonic, electronic and magnetic properties, which in turn is reflected in their diverse signal input-output functionalities based on interactions with other molecules and external stimuli. Therefore, porphyrins and related macrocycles play a preeminent role in sensing applications involving chromophores. In this review, we discuss recent developments in porphyrin-based sensing applications in conjunction with the new advanced concept of nanoarchitectonics, which creates functional nanostructures based on a profound understanding of mutual interactions between the individual nanostructures and their arbitrary arrangements. Following a brief explanation of the basics of porphyrin chemistry and physics, recent examples in the corresponding fields are discussed according to a classification based on physical modes of detection including optical detection (absorption/photoluminescence spectroscopy and energy and electron transfer processes), other spectral modes (circular dichroism, plasmon and nuclear magnetic resonance), electronic and electrochemical modes, and other sensing modes.
卟啉及相关分子家族是重要的有机模块,这一点在1915年、1930年、1961年、1962年、1965年和1988年因与卟啉相关的生物功能研究而颁发的诺贝尔化学奖中得到了体现。通过引入各种官能团和其他元素,可以对卟啉核心进行合成修饰,从而能够创造出多种类型的卟啉衍生物。这一特性使得卟啉成为极其有用的分子,尤其是结合它们其他有趣的光子、电子和磁性特性时,这些特性又反映在它们基于与其他分子和外部刺激相互作用的多样信号输入-输出功能中。因此,卟啉及相关大环化合物在涉及发色团的传感应用中发挥着卓越的作用。在本综述中,我们结合纳米构筑学这一新的先进概念,讨论基于卟啉的传感应用的最新进展,纳米构筑学基于对单个纳米结构及其任意排列之间相互作用的深刻理解来创建功能纳米结构。在简要解释卟啉化学和物理的基础知识之后,根据基于检测物理模式的分类,包括光学检测(吸收/光致发光光谱以及能量和电子转移过程)、其他光谱模式(圆二色性、等离子体和核磁共振)、电子和电化学模式以及其他传感模式,讨论相应领域的最新实例。