Suppr超能文献

用于先进器件的材料纳米结构学

Materials Nanoarchitectonics for Advanced Devices.

作者信息

Ariga Katsuhiko

机构信息

Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan.

Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan.

出版信息

Materials (Basel). 2024 Dec 3;17(23):5918. doi: 10.3390/ma17235918.

Abstract

Advances in nanotechnology have made it possible to observe and evaluate structures down to the atomic and molecular level. The next step in the development of functional materials is to apply the knowledge of nanotechnology to materials sciences. This is the role of nanoarchitectonics, which is a concept of post-nanotechnology. Nanoarchitectonics is defined as a methodology to create functional materials using nanounits such as atoms, molecules, and nanomaterials as building blocks. Nanoarchitectonics is very general and is not limited to materials or applications, and thus nanoarchitecture is applied in many fields. In particular, in the evolution from nanotechnology to nanoarchitecture, it is useful to consider the contribution of nanoarchitecture in device applications. There may be a solution to the widely recognized problem of integrating top-down and bottom-up approaches in the design of functional systems. With this in mind, this review discusses examples of nanoarchitectonics in developments of advanced devices. Some recent examples are introduced through broadly dividing them into organic molecular nanoarchitectonics and inorganic materials nanoarchitectonics. Examples of organic molecular nanoarchitecture include a variety of control structural elements, such as π-conjugated structures, chemical structures of complex ligands, steric hindrance effects, molecular stacking, isomerization and color changes due to external stimuli, selective control of redox reactions, and doping control of organic semiconductors by electron transfer reactions. Supramolecular chemical processes such as association and intercalation of organic molecules are also important in controlling device properties. The nanoarchitectonics of inorganic materials often allows for control of size, dimension, and shape, and their associated physical properties can also be controlled. In addition, there are specific groups of materials that are suitable for practical use, such as nanoparticles and graphene. Therefore, nanoarchitecture of inorganic materials also has a more practical aspect. Based on these aspects, this review finally considers the future of materials nanoarchitectonics for further advanced devices.

摘要

纳米技术的进步使得观察和评估直至原子和分子水平的结构成为可能。功能材料发展的下一步是将纳米技术知识应用于材料科学。这就是纳米结构学的作用,它是后纳米技术的一个概念。纳米结构学被定义为一种使用原子、分子和纳米材料等纳米单元作为构建块来制造功能材料的方法。纳米结构学非常通用,不限于材料或应用,因此纳米结构学被应用于许多领域。特别是,在从纳米技术向纳米结构学的演进中,考虑纳米结构学在器件应用中的贡献是很有用的。在功能系统设计中广泛认可的自上而下和自下而上方法的整合问题可能会有解决方案。考虑到这一点,本综述讨论了先进器件开发中纳米结构学的实例。通过将近期实例大致分为有机分子纳米结构学和无机材料纳米结构学来进行介绍。有机分子纳米结构的实例包括各种控制结构元素,如π共轭结构、复杂配体的化学结构、空间位阻效应、分子堆积、外部刺激引起的异构化和颜色变化、氧化还原反应的选择性控制以及通过电子转移反应对有机半导体的掺杂控制。有机分子的缔合和嵌入等超分子化学过程在控制器件性能方面也很重要。无机材料的纳米结构学通常允许对尺寸、维度和形状进行控制,并且它们相关的物理性质也可以被控制。此外,有特定的材料组适用于实际应用,如纳米颗粒和石墨烯。因此,无机材料的纳米结构学也有更实际的一面。基于这些方面,本综述最后考虑了用于进一步先进器件的材料纳米结构学的未来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/710f/11643071/b3fd9ad739c0/materials-17-05918-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验