Suppr超能文献

通过原子力显微镜、全原子和粗粒度分子动力学方法研究与神经元疾病相关的富含β-蛋白的纳米力学。

Nanomechanics of β-rich proteins related to neuronal disorders studied by AFM, all-atom and coarse-grained MD methods.

作者信息

Mikulska Karolina, Strzelecki Janusz, Nowak Wiesław

机构信息

Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100, Torun, Poland.

出版信息

J Mol Model. 2014 Mar;20(3):2144. doi: 10.1007/s00894-014-2144-5. Epub 2014 Feb 22.

Abstract

Computer simulations of protein unfolding substantially help to interpret force-extension curves measured in single-molecule atomic force microscope (AFM) experiments. Standard all-atom (AA) molecular dynamics simulations (MD) give a good qualitative mechanical unfolding picture but predict values too large for the maximum AFM forces with the common pulling speeds adopted here. Fine tuned coarse-grain MD computations (CG MD) offer quantitative agreement with experimental forces. In this paper we address an important methodological aspect of MD modeling, namely the impact of numerical noise generated by random assignments of bead velocities on maximum forces (F(max)) calculated within the CG MD approach. Distributions of CG forces from 2000 MD runs for several model proteins rich in β structures and having folds with increasing complexity are presented. It is shown that F(max) have nearly Gaussian distributions and that values of F(max) for each of those β-structures may vary from 93.2 ± 28.9 pN (neurexin) to 198.3 ± 25.2 pN (fibronectin). The CG unfolding spectra are compared with AA steered MD data and with results of our AFM experiments for modules present in contactin, fibronectin and neurexin. The stability of these proteins is critical for the proper functioning of neuronal synaptic clefts. Our results confirm that CG modeling of a single molecule unfolding is a good auxiliary tool in nanomechanics but large sets of data have to be collected before reliable comparisons of protein mechanical stabilities are made.

摘要

蛋白质解折叠的计算机模拟极大地有助于解释在单分子原子力显微镜(AFM)实验中测得的力-伸长曲线。标准的全原子(AA)分子动力学模拟(MD)给出了一个很好的定性机械解折叠图像,但对于此处采用的常见拉伸速度,预测的最大AFM力值过大。微调的粗粒化MD计算(CG MD)与实验力提供了定量的一致性。在本文中,我们探讨了MD建模的一个重要方法学方面,即珠子速度的随机分配所产生的数值噪声对CG MD方法中计算的最大力(F(max))的影响。给出了几种富含β结构且折叠复杂度不断增加的模型蛋白质的2000次MD运行的CG力分布。结果表明,F(max)具有近似高斯分布,并且这些β结构中每一个的F(max)值可能在93.2±28.9 pN(神经纤毛蛋白)到198.3±25.2 pN(纤连蛋白)之间变化。将CG解折叠光谱与AA引导的MD数据以及我们对接触蛋白(contactin)、纤连蛋白和神经纤毛蛋白中存在的模块进行的AFM实验结果进行了比较。这些蛋白质的稳定性对于神经元突触间隙的正常功能至关重要。我们的结果证实,单分子解折叠的CG建模是纳米力学中的一个很好的辅助工具,但在对蛋白质机械稳定性进行可靠比较之前,必须收集大量数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9cc/3964301/97f0dbdf4424/894_2014_2144_Figa_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验