Institute of Advanced Machinery Design Technology, Korea University, 02841, Seoul, Republic of Korea.
Department of Mechanical Engineering, Korea University, 02841, Seoul, Republic of Korea.
J Mol Graph Model. 2018 May;81:162-167. doi: 10.1016/j.jmgm.2018.03.001. Epub 2018 Mar 12.
Experimental force spectroscopy has been effectively utilized for measuring structural characterization of biomolecules and mechanical properties of biomaterials. Specifically, atomic force microscopy (AFM) has been widely used to portray biomolecular characterization in single-molecule experiment by observing the unfolding behavior of the proteins. Not only the experimental techniques enable us to characterize globular protein, but computational methods like molecular dynamics (MD) also gives insight into understanding biomolecular structures. To better comprehend the behavior of biomolecules, conditions such as pulling velocities and loading rates are put to the test, yet there are still limitations in understanding the unfolding behavior of biomolecules with the effect of different loading devices. In this study, we performed an all-atom MD and steered molecular dynamics (SMD) simulations considering different loading device effects such as "soft" and "stiff" to characterize the anisotropic unfolding behavior of ubiquitin protein. We found out the anisotropic unfolding pathways of the protein through the broken number of hydrogen bonds and geometric secondary structures of the biomolecule. Our study provides the importance for usage of various loading-devices on biomolecules when analyzing the structural compositions and the characteristics of globular biomolecules.
实验力谱学已被有效地用于测量生物分子的结构特征和生物材料的机械性能。具体来说,原子力显微镜(AFM)已被广泛用于通过观察蛋白质的展开行为来描绘单分子实验中的生物分子特征。不仅实验技术使我们能够表征球状蛋白质,而且像分子动力学(MD)这样的计算方法也使我们能够深入了解生物分子结构。为了更好地理解生物分子的行为,我们对诸如拉伸速度和加载速率等条件进行了测试,但在理解不同加载设备对生物分子展开行为的影响方面仍然存在局限性。在这项研究中,我们进行了全原子 MD 和导向分子动力学(SMD)模拟,考虑了不同的加载设备效应,如“软”和“硬”,以表征泛素蛋白的各向异性展开行为。我们通过破坏氢键的数量和生物分子的几何二级结构发现了蛋白质的各向异性展开途径。我们的研究为在分析球状生物分子的结构组成和特性时使用各种加载设备提供了重要依据。