Suppr超能文献

活性氧生成的光遗传学控制。

Optogenetic control of ROS production.

作者信息

Wojtovich Andrew P, Foster Thomas H

机构信息

Department of Medicine, University of Rochester Medical Center, Box 711, 601 Elmwood Avenue, Rochester, NY 14642, USA.

Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, USA.

出版信息

Redox Biol. 2014 Feb 3;2:368-76. doi: 10.1016/j.redox.2014.01.019. eCollection 2014.

Abstract

Reactive Oxygen Species (ROS) are known to cause oxidative damage to DNA, proteins and lipids. In addition, recent evidence suggests that ROS can also initiate signaling cascades that respond to stress and modify specific redox-sensitive moieties as a regulatory mechanism. This suggests that ROS are physiologically-relevant signaling molecules. However, these sensor/effector molecules are not uniformly distributed throughout the cell. Moreover, localized ROS damage may elicit site-specific compensatory measures. Thus, the impact of ROS can be likened to that of calcium, a ubiquitous second messenger, leading to the prediction that their effects are exquisitely dependent upon their location, quantity and even the timing of generation. Despite this prediction, ROS signaling is most commonly intuited through the global administration of chemicals that produce ROS or by ROS quenching through global application of antioxidants. Optogenetics, which uses light to control the activity of genetically-encoded effector proteins, provides a means of circumventing this limitation. Photo-inducible genetically-encoded ROS-generating proteins (RGPs) were originally employed for their phototoxic effects and cell ablation. However, reducing irradiance and/or fluence can achieve sub-lethal levels of ROS that may mediate subtle signaling effects. Hence, transgenic expression of RGPs as fusions to native proteins gives researchers a new tool to exert spatial and temporal control over ROS production. This review will focus on the new frontier defined by the experimental use of RGPs to study ROS signaling.

摘要

已知活性氧(ROS)会对DNA、蛋白质和脂质造成氧化损伤。此外,最近的证据表明,ROS还能启动对应激作出反应的信号级联反应,并修饰特定的氧化还原敏感部分作为一种调节机制。这表明ROS是生理相关的信号分子。然而,这些传感器/效应分子并非均匀分布于整个细胞。此外,局部ROS损伤可能引发位点特异性的补偿措施。因此,ROS的影响可与无处不在的第二信使钙的影响相类比,从而预测其作用极其依赖于它们的位置、数量甚至产生的时间。尽管有此预测,但ROS信号传导最常见的是通过全局施用产生ROS的化学物质或通过全局应用抗氧化剂淬灭ROS来推断。光遗传学利用光来控制基因编码效应蛋白的活性,提供了一种规避这一限制的方法。光诱导基因编码的ROS生成蛋白(RGP)最初因其光毒性作用和细胞消融而被采用。然而,降低辐照度和/或通量可以实现亚致死水平的ROS,这可能介导微妙的信号效应。因此,将RGP作为与天然蛋白的融合体进行转基因表达,为研究人员提供了一种对ROS产生进行空间和时间控制的新工具。本综述将聚焦于通过RGP的实验性应用来研究ROS信号传导所定义的新领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad6f/3926119/3ee3ecfb21be/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验