Suppr超能文献

使用具有显式特征映射的线性降维进行微小RNA识别。

MicroRNA identification using linear dimensionality reduction with explicit feature mapping.

作者信息

Shakiba Navid, Rueda Luis

出版信息

BMC Proc. 2013 Dec 20;7(Suppl 7):S8. doi: 10.1186/1753-6561-7-S7-S8.

Abstract

BACKGROUND

microRNAs are a class of small RNAs, about 20 nt long, which regulate cellular processes in animals and plants. Identifying microRNAs is one of the most important tasks in gene regulation studies. The main features used for identifying these tiny molecules are those in hairpin secondary structures of pre-microRNA.

RESULTS

A new classifier is employed to identify precursor microRNAs from both pseudo hairpins and other non-coding RNAs. This classifier achieves a geometric mean Gm = 92.20% with just three features and 92.91% with seven features.

CONCLUSION

This study shows that linear dimensionality reduction combined with explicit feature mapping, namely miLDR-EM, achieves high performance in classification of microRNAs from other sequences. Also, explicitly mapping data onto a high dimensional space could be a useful alternative to kernel-based methods for large datasets with a small number of features. Moreover, we demonstrate that microRNAs can be accurately identified by just using three properties that involve minimum free energy.

摘要

背景

微小RNA是一类长度约为20个核苷酸的小RNA,可调节动植物的细胞过程。识别微小RNA是基因调控研究中最重要的任务之一。用于识别这些微小分子的主要特征是前体微小RNA发夹二级结构中的特征。

结果

采用一种新的分类器从假发夹和其他非编码RNA中识别前体微小RNA。该分类器仅使用三个特征时几何均值Gm = 92.20%,使用七个特征时几何均值Gm = 92.91%。

结论

本研究表明,线性降维与显式特征映射相结合,即miLDR-EM,在从其他序列中分类微小RNA方面具有高性能。此外,对于具有少量特征的大型数据集,将数据显式映射到高维空间可能是基于核方法的一种有用替代方法。而且,我们证明仅使用涉及最小自由能的三个属性就可以准确识别微小RNA。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/157c/4044883/b8d306b562a2/1753-6561-7-S7-S8-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验