MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
J Ind Microbiol Biotechnol. 2014 Apr;41(4):721-31. doi: 10.1007/s10295-014-1418-3. Epub 2014 Feb 25.
Acetyl-CoA, an important molecule in cellular metabolism, is generated in multiple subcellular compartments and mainly used for energy production, biosynthesis of a diverse set of molecules, and protein acetylation. In eukaryotes, cytosolic acetyl-CoA is derived mainly from the conversion of citrate and CoA by ATP-citrate lyase. Here, we describe the targeted deletions of acl1 and acl2, two tandem divergently transcribed genes encoding subunits of ATP-citrate lyase in Aspergillus niger. We show that loss of acl1 or/and acl2 results in a significant decrease of acetyl-CoA and citric acid levels in these mutants, concomitant with diminished vegetative growth, decreased pigmentation, reduced asexual conidiogenesis, and delayed conidial germination. Exogenous addition of acetate repaired the defects of acl-deficient strains in growth and conidial germination but not pigmentation and conidiogenesis. We demonstrate that both Acl1 and Acl2 subunits are required to form a functional ATP-citrate lyase in A. niger. First, deletion of acl1 or/and acl2 resulted in similar defects in growth and development. Second, enzyme activity assays revealed that loss of either acl1 or acl2 gene resulted in loss of ATP-citrate lyase activity. Third, in vitro enzyme assays using bacterially expressed 6His-tagged Acl protein revealed that only the complex of Acl1 and Acl2 showed ATP-citrate lyase activity, no enzyme activities were detected with the individual protein. Fourth, EGFP-Acl1 and mCherry-Acl2 proteins were co-localized in the cytosol. Thus, acl1 and acl2 coordinately modulate the cytoplasmic acetyl-CoA levels to regulate growth, development, and citric acid synthesis in A. niger.
乙酰辅酶 A 是细胞代谢中的一种重要分子,它在多个亚细胞区室中生成,主要用于能量产生、多种分子的生物合成和蛋白质乙酰化。在真核生物中,细胞质中的乙酰辅酶 A 主要来自于三磷酸腺苷-柠檬酸裂合酶(ATP-citrate lyase)将柠檬酸和辅酶 A 转化而来。在这里,我们描述了靶向敲除黑曲霉中编码 ATP-citrate 裂合酶亚基的串联转录的 acl1 和 acl2 两个基因。我们发现,acl1 或/和 acl2 的缺失导致这些突变体中的乙酰辅酶 A 和柠檬酸水平显著降低,同时伴随着营养生长的显著减少、色素沉着减少、无性分生孢子形成减少和分生孢子萌发延迟。外源性添加乙酸可修复 acl 缺陷菌株在生长和分生孢子萌发方面的缺陷,但不能修复色素沉着和分生孢子形成方面的缺陷。我们证明了 Acl1 和 Acl2 亚基在黑曲霉中形成功能性 ATP-citrate 裂合酶都是必需的。首先,acl1 或/和 acl2 的缺失导致生长和发育的相似缺陷。其次,酶活性测定表明,任一 acl1 或 acl2 基因的缺失都会导致 ATP-citrate 裂合酶活性丧失。第三,使用细菌表达的 6His 标记的 Acl 蛋白进行体外酶测定表明,只有 Acl1 和 Acl2 的复合物显示出 ATP-citrate 裂合酶活性,而单独的蛋白则没有酶活性。第四,EGFP-Acl1 和 mCherry-Acl2 蛋白在细胞质中发生共定位。因此,acl1 和 acl2 协调调节细胞质中的乙酰辅酶 A 水平,以调节黑曲霉的生长、发育和柠檬酸合成。