Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104;
J Immunol. 2014 Apr 1;192(7):3190-9. doi: 10.4049/jimmunol.1302985. Epub 2014 Feb 24.
Fatty acids (FAs) are essential constituents of cell membranes, signaling molecules, and bioenergetic substrates. Because CD8(+) T cells undergo both functional and metabolic changes during activation and differentiation, dynamic changes in FA metabolism also occur. However, the contributions of de novo lipogenesis to acquisition and maintenance of CD8(+) T cell function are unclear. In this article, we demonstrate the role of FA synthesis in CD8(+) T cell immunity. T cell-specific deletion of acetyl coenzyme A carboxylase 1 (ACC1), an enzyme that catalyzes conversion of acetyl coenzyme A to malonyl coenzyme A, a carbon donor for long-chain FA synthesis, resulted in impaired peripheral persistence and homeostatic proliferation of CD8(+) T cells in naive mice. Loss of ACC1 did not compromise effector CD8(+) T cell differentiation upon listeria infection but did result in a severe defect in Ag-specific CD8(+) T cell accumulation because of increased death of proliferating cells. Furthermore, in vitro mitogenic stimulation demonstrated that defective blasting and survival of ACC1-deficient CD8(+) T cells could be rescued by provision of exogenous FA. These results suggest an essential role for ACC1-mediated de novo lipogenesis as a regulator of CD8(+) T cell expansion, and may provide insights for therapeutic targets for interventions in autoimmune diseases, cancer, and chronic infections.
脂肪酸(FAs)是细胞膜、信号分子和生物能量底物的必需组成部分。由于 CD8(+) T 细胞在激活和分化过程中经历功能和代谢变化,因此 FA 代谢也会发生动态变化。然而,从头合成脂质对 CD8(+) T 细胞功能的获得和维持的贡献尚不清楚。在本文中,我们证明了 FA 合成在 CD8(+) T 细胞免疫中的作用。特异性敲除乙酰辅酶 A 羧化酶 1(ACC1),一种将乙酰辅酶 A 转化为丙二酰辅酶 A的酶,丙二酰辅酶 A是长链 FA 合成的碳供体,导致幼稚小鼠中 CD8(+) T 细胞在外周的持久性和稳态增殖受损。在李斯特菌感染时,ACC1 的缺失并不影响效应 CD8(+) T 细胞的分化,但由于增殖细胞死亡增加,导致 Ag 特异性 CD8(+) T 细胞的积累严重缺陷。此外,体外有丝分裂刺激表明,通过提供外源性 FA,可挽救 ACC1 缺陷型 CD8(+) T 细胞的增殖和存活缺陷。这些结果表明,ACC1 介导的从头脂质合成作为 CD8(+) T 细胞扩增的调节剂具有重要作用,并可为自身免疫性疾病、癌症和慢性感染的干预治疗提供新的靶点。