Suppr超能文献

通过电化学原子层沉积(E-ALD)形成铂钌纳米薄膜。

PtRu nanofilm formation by electrochemical atomic layer deposition (E-ALD).

作者信息

Jayaraju Nagarajan, Banga Dhego, Thambidurai Chandru, Liang Xuehai, Kim Youn-Guen, Stickney John L

机构信息

Department of Chemistry, University of Georgia , Athens, Georgia 30602, United States.

出版信息

Langmuir. 2014 Mar 25;30(11):3254-63. doi: 10.1021/la403018v. Epub 2014 Mar 12.

Abstract

The high CO tolerance of PtRu electrocatalysis, compared with pure Pt and other Pt-based alloys, makes it interesting as an anode material in proton exchange membrane fuel cells (PEMFC) and direct methanol fuel cells (DMFC). This report describes the formation of bimetallic PtRu nanofilms using the electrochemical form of atomic layer deposition (E-ALD). Metal nanofilm formation using E-ALD is facilitated by use of surface-limited redox replacement (SLRR), where an atomic layer (AL) of a sacrificial metal is first formed by UPD. The AL is then spontaneously exchanged for a more noble metal at the open-circuit potential (OCP). In the present study, PtRu nanofilms were formed using SLRR for Pt and Ru, and Pb UPD was used to form the sacrificial layers. The PtRu E-ALD cycle consisted of Pb UPD at -0.19 V, followed by replacement using Pt(IV) ions at OCP, rinsing with blank, then Pb UPD at -0.19 V, followed by replacement using Ru(III) ions at OCP. PtRu nanofilm thickness was controlled by the number of times the cycle was repeated. PtRu nanofilms with atomic proportions of 70/30, 82/18, and 50/50 Pt/Ru were formed on Au on glass slides using related E-ALD cycles. The charge for Pb UPD and changes in the OCP during replacement were monitored during the deposition process. The PtRu films were then characterized by CO adsorption and electrooxidation to determine their overpotentials. The 50/50 PtRu nanofilms displayed the lowest CO electrooxidation overpotentials as well as the highest currents, compared with the other alloy compositions, pure Pt, and pure Ru. In addition, CO electrooxidation studies of the terminating AL on the 50/50 PtRu nanostructured alloy were investigated by deposition of one or two SLRR of Pt, Ru, or PtRu on top.

摘要

与纯铂及其他铂基合金相比,铂钌电催化具有高一氧化碳耐受性,这使其作为质子交换膜燃料电池(PEMFC)和直接甲醇燃料电池(DMFC)的阳极材料颇具吸引力。本报告描述了使用电化学原子层沉积(E-ALD)方法形成双金属铂钌纳米薄膜的过程。利用表面受限氧化还原置换(SLRR)有助于通过E-ALD形成金属纳米薄膜,其中首先通过欠电位沉积(UPD)形成牺牲金属的原子层(AL)。然后在开路电位(OCP)下,该原子层会自发地被更贵金属置换。在本研究中,使用针对铂和钌的SLRR形成铂钌纳米薄膜,并使用铅欠电位沉积来形成牺牲层。铂钌E-ALD循环包括在-0.19 V下进行铅欠电位沉积,然后在开路电位下用铂(IV)离子进行置换,用空白溶液冲洗,接着在-0.19 V下再次进行铅欠电位沉积,随后在开路电位下用钌(III)离子进行置换。铂钌纳米薄膜的厚度通过重复循环的次数来控制。使用相关的E-ALD循环在载玻片上的金表面形成了原子比例为70/30、82/18和50/50的铂/钌的铂钌纳米薄膜。在沉积过程中监测了铅欠电位沉积的电荷量以及置换过程中开路电位的变化。然后通过一氧化碳吸附和电氧化对铂钌薄膜进行表征,以确定其过电位。与其他合金组成、纯铂和纯钌相比,50/50的铂钌纳米薄膜表现出最低的一氧化碳电氧化过电位以及最高的电流。此外,通过在50/50的铂钌纳米结构合金上沉积一层或两层铂、钌或铂钌的SLRR,研究了终止原子层的一氧化碳电氧化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验