Suppr超能文献

电子和空穴的量子液滴。

Quantum droplets of electrons and holes.

机构信息

1] JILA, University of Colorado and National Institute of Standards and Technology, Boulder, Colorado 80309-0440, USA [2] Department of Physics, University of Colorado, Boulder, Colorado 80309-0390, USA.

JILA, University of Colorado and National Institute of Standards and Technology, Boulder, Colorado 80309-0440, USA.

出版信息

Nature. 2014 Feb 27;506(7489):471-5. doi: 10.1038/nature12994.

Abstract

Interacting many-body systems are characterized by stable configurations of objects--ranging from elementary particles to cosmological formations--that also act as building blocks for more complicated structures. It is often possible to incorporate interactions in theoretical treatments of crystalline solids by introducing suitable quasiparticles that have an effective mass, spin or charge which in turn affects the material's conductivity, optical response or phase transitions. Additional quasiparticle interactions may also create strongly correlated configurations yielding new macroscopic phenomena, such as the emergence of a Mott insulator, superconductivity or the pseudogap phase of high-temperature superconductors. In semiconductors, a conduction-band electron attracts a valence-band hole (electronic vacancy) to create a bound pair, known as an exciton, which is yet another quasiparticle. Two excitons may also bind together to give molecules, often referred to as biexcitons, and even polyexcitons may exist. In indirect-gap semiconductors such as germanium or silicon, a thermodynamic phase transition may produce electron-hole droplets whose diameter can approach the micrometre range. In direct-gap semiconductors such as gallium arsenide, the exciton lifetime is too short for such a thermodynamic process. Instead, different quasiparticle configurations are stabilized dominantly by many-body interactions, not by thermalization. The resulting non-equilibrium quantum kinetics is so complicated that stable aggregates containing three or more Coulomb-correlated electron-hole pairs remain mostly unexplored. Here we study such complex aggregates and identify a new stable configuration of charged particles that we call a quantum droplet. This configuration exists in a plasma and exhibits quantization owing to its small size. It is charge neutral and contains a small number of particles with a pair-correlation function that is characteristic of a liquid. We present experimental and theoretical evidence for the existence of quantum droplets in an electron-hole plasma created in a gallium arsenide quantum well by ultrashort optical pulses.

摘要

相互作用的多体系统的特点是具有稳定的物体配置,这些物体的范围从基本粒子到宇宙形成,它们也是更复杂结构的构建块。在理论处理晶体固体时,通常可以通过引入具有有效质量、自旋或电荷的合适准粒子来纳入相互作用,而这反过来又会影响材料的导电性、光学响应或相变。额外的准粒子相互作用也可能产生强关联配置,从而产生新的宏观现象,例如莫特绝缘、超导或高温超导体的赝隙相。在半导体中,导带电子吸引价带空穴(电子空位)形成束缚对,称为激子,这是另一种准粒子。两个激子也可以结合在一起形成分子,通常称为双激子,甚至可能存在多激子。在间接带隙半导体(如锗或硅)中,热力学相变可能会产生电子-空穴液滴,其直径可能接近微米范围。在直接带隙半导体(如砷化镓)中,激子寿命太短,无法进行这种热力学过程。相反,主要是通过多体相互作用而不是热化来稳定不同的准粒子配置。由此产生的非平衡量子动力学非常复杂,以至于包含三个或更多库仑相关电子-空穴对的稳定聚集体在很大程度上仍未得到探索。在这里,我们研究了这种复杂的聚集体,并确定了一种新的稳定带电粒子配置,我们称之为量子液滴。这种配置存在于等离子体中,并由于其小尺寸而表现出量子化。它是电中性的,包含少量具有特征为液体的对关联函数的粒子。我们通过在砷化镓量子阱中使用超短光脉冲产生的电子-空穴等离子体中的实验和理论证据证明了量子液滴的存在。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验