Langer F, Hohenleutner M, Schmid C P, Poellmann C, Nagler P, Korn T, Schüller C, Sherwin M S, Huttner U, Steiner J T, Koch S W, Kira M, Huber R
Department of Physics, University of Regensburg, 93040 Regensburg, Germany.
Department of Physics and the Institute for Terahertz Science and Technology, University of California at Santa Barbara, Santa Barbara, California 93106, USA.
Nature. 2016 May 12;533(7602):225-9. doi: 10.1038/nature17958.
Ever since Ernest Rutherford scattered α-particles from gold foils, collision experiments have revealed insights into atoms, nuclei and elementary particles. In solids, many-body correlations lead to characteristic resonances--called quasiparticles--such as excitons, dropletons, polarons and Cooper pairs. The structure and dynamics of quasiparticles are important because they define macroscopic phenomena such as Mott insulating states, spontaneous spin- and charge-order, and high-temperature superconductivity. However, the extremely short lifetimes of these entities make practical implementations of a suitable collider challenging. Here we exploit lightwave-driven charge transport, the foundation of attosecond science, to explore ultrafast quasiparticle collisions directly in the time domain: a femtosecond optical pulse creates excitonic electron-hole pairs in the layered dichalcogenide tungsten diselenide while a strong terahertz field accelerates and collides the electrons with the holes. The underlying dynamics of the wave packets, including collision, pair annihilation, quantum interference and dephasing, are detected as light emission in high-order spectral sidebands of the optical excitation. A full quantum theory explains our observations microscopically. This approach enables collision experiments with various complex quasiparticles and suggests a promising new way of generating sub-femtosecond pulses.
自欧内斯特·卢瑟福用金箔散射α粒子以来,碰撞实验揭示了有关原子、原子核和基本粒子的见解。在固体中,多体关联导致了诸如激子、液滴子、极化子和库珀对之类的特征共振,即所谓的准粒子。准粒子的结构和动力学很重要,因为它们定义了诸如莫特绝缘态、自发自旋和电荷序以及高温超导等宏观现象。然而,这些实体极短的寿命使得合适的对撞机的实际应用具有挑战性。在这里,我们利用阿秒科学的基础——光波驱动的电荷传输,直接在时域中探索超快准粒子碰撞:一个飞秒光脉冲在层状二硫化钨中产生激子电子 - 空穴对,而一个强太赫兹场加速电子并使其与空穴碰撞。波包的潜在动力学,包括碰撞、对湮灭、量子干涉和退相,被检测为光激发高阶光谱边带中的光发射。一个完整的量子理论从微观上解释了我们的观察结果。这种方法能够对各种复杂的准粒子进行碰撞实验,并提出了一种产生亚飞秒脉冲的有前景的新方法。