Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, 52900 Israel.
J Neurosci. 2014 Feb 26;34(9):3247-52. doi: 10.1523/JNEUROSCI.4375-13.2014.
In a typical visual scene we continuously perceive a "figure" that is segregated from the surrounding "background" despite ongoing microsaccades and small saccades that are performed when attempting fixation (fixational saccades [FSs]). Previously reported neuronal correlates of figure-ground (FG) segregation in the primary visual cortex (V1) showed enhanced activity in the "figure" along with suppressed activity in the noisy "background." However, it is unknown how this FG modulation in V1 is affected by FSs. To investigate this question, we trained two monkeys to detect a contour embedded in a noisy background while simultaneously imaging V1 using voltage-sensitive dyes. During stimulus presentation, the monkeys typically performed 1-3 FSs, which displaced the contour over the retina. Using eye position and a 2D analytical model to map the stimulus onto V1, we were able to compute FG modulation before and after each FS. On the spatial cortical scale, we found that, after each FS, FG modulation follows the stimulus retinal displacement and "hops" within the V1 retinotopic map, suggesting visual instability. On the temporal scale, FG modulation is initiated in the new retinotopic position before it disappeared from the old retinotopic position. Moreover, the FG modulation developed faster after an FS, compared with after stimulus onset, which may contribute to visual stability of FG segregation, along the timeline of stimulus presentation. Therefore, despite spatial discontinuity of FG modulation in V1, the higher-order stability of FG modulation along time may enable our stable and continuous perception.
在典型的视觉场景中,我们会连续感知到一个与周围“背景”分离的“图形”,尽管我们在试图注视时会进行微扫视和小扫视(注视性扫视[FSs])。先前在初级视觉皮层(V1)中报告的与图形-背景(FG)分离相关的神经元相关性显示,在“图形”中增强了活动,而在嘈杂的“背景”中抑制了活动。然而,目前尚不清楚 V1 中的这种 FG 调制如何受到 FSs 的影响。为了研究这个问题,我们训练了两只猴子在同时使用电压敏感染料对 V1 进行成像的情况下,检测嵌入在嘈杂背景中的轮廓。在刺激呈现期间,猴子通常会进行 1-3 次 FS,这会使轮廓在视网膜上移动。我们使用眼位和二维分析模型将刺激映射到 V1,从而能够在每次 FS 前后计算 FG 调制。在空间皮质尺度上,我们发现,每次 FS 后,FG 调制会跟随刺激的视网膜位移,并在 V1 的视网膜映射图内“跳跃”,这表明视觉不稳定。在时间尺度上,FG 调制会在旧的视网膜位置消失之前,在新的视网膜位置开始。此外,与刺激开始后相比,FS 后 FG 调制的起始更快,这可能有助于 FG 分离的视觉稳定性,沿着刺激呈现的时间线。因此,尽管 V1 中的 FG 调制存在空间不连续性,但 FG 调制沿时间的更高阶稳定性可能使我们能够稳定连续地感知。