Suppr超能文献

电化学控制胞外电子传递对蓝藻生物钟的调控。

Regulation of the cyanobacterial circadian clock by electrochemically controlled extracellular electron transfer.

机构信息

Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan).

出版信息

Angew Chem Int Ed Engl. 2014 Feb 17;53(8):2208-11. doi: 10.1002/anie.201309560. Epub 2014 Feb 4.

Abstract

There is growing awareness that circadian clocks are closely related to the intracellular redox state across a range of species. As the redox state is determined by the exchange of the redox species, electrochemically controlled extracellular electron transfer (EC-EET), a process in which intracellular electrons are exchanged with extracellular electrodes, is a promising approach for the external regulation of circadian clocks. Herein, we discuss whether the circadian clock can be regulated by EC-EET using the cyanobacterium Synechococcus elongatus PCC7942 as a model system. In vivo monitoring of chlorophyll fluorescence revealed that the redox state of the plastoquionone pool could be controlled with EC-EET by simply changing the electrode potential. As a result, the endogenous circadian clock of S. elongatus cells was successfully entrained through periodically modulated EC-EET by emulating the natural light/dark cycle, even under constant illumination conditions. This is the first example of regulating the biological clock by electrochemistry.

摘要

人们越来越意识到,生物钟与各种物种的细胞内氧化还原状态密切相关。由于氧化还原状态是由氧化还原物质的交换决定的,电化学控制的细胞外电子转移(EC-EET),即细胞内电子与细胞外电极交换的过程,是一种有前途的外部调节生物钟的方法。本文以蓝藻 Synechococcus elongatus PCC7942 为模型系统,讨论了 EC-EET 是否可以调节生物钟。通过体内监测叶绿素荧光发现,通过简单地改变电极电位,可以控制质醌池的氧化还原状态。因此,通过模拟自然光/暗循环,即使在持续光照条件下,通过周期性调制 EC-EET,成功地使 S. elongatus 细胞的内源性生物钟同步。这是电化学调节生物钟的首例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验