Suppr超能文献

基于人工神经网络的华法林个体化给药。

Dosage individualization of warfarin using artificial neural networks.

机构信息

Faculty of Pharmacy, The University of Jordan, Amman, 11942, Jordan,

出版信息

Mol Diagn Ther. 2014 Jun;18(3):371-9. doi: 10.1007/s40291-014-0090-7.

Abstract

BACKGROUND AND OBJECTIVES

Our objective was to explore artificial neural networks (ANNs) as a possible tool for dosage individualization of warfarin.

METHODS

Demographic, clinical, and genetic data were gathered from a previously collected cohort of patients with a stable warfarin dosage who were able to achieve an observed international normalized ratio of 2-3. Data from a cohort of 3,415 patients were used to develop an ANN dosing algorithm. Data from another cohort of 856 were used to validate the algorithm. The clinical significance of the ANN dosing algorithm was evaluated by calculating the percentage of patients whose predicted dosage of warfarin was within 20 % of the actual stable therapeutic dose. The clinical significance was also compared with a previously published dosing algorithm.

RESULTS

A feed-forward neural network with three layers was able to successfully predict the ideal warfarin dosage in 48 % of the patients. The neural network model explained 48 % and 43 % of the dosage variability observed among patients in the derivation and validation cohorts, respectively. ANN analysis identified several predictors of warfarin dosage including race; age; height; weight; cytochrome P450 (CYP)2C9 genotype; VKORC1 genotype; sulfonamide, azole antifungals, or macrolide administration; carbamazepine, phenytoin, or rifampicin administration; and amiodarone administration.

CONCLUSION

An ANN was applied to develop a warfarin dosing algorithm. The proposed dosing algorithm has the potential to recommend warfarin dosages that are close to the appropriate dosages.

摘要

背景与目的

我们的目的是探索人工神经网络(ANNs)是否可以作为华法林剂量个体化的一种工具。

方法

从之前收集的一组稳定华法林剂量且能够达到 2-3 的国际标准化比值(INR)的患者中收集人口统计学、临床和遗传数据。使用来自 3415 名患者的队列数据来开发 ANN 给药算法。使用另一队列 856 名患者的数据来验证算法。通过计算预测华法林剂量与实际稳定治疗剂量相差 20%的患者比例来评估 ANN 给药算法的临床意义。并将其与之前发表的给药算法进行比较。

结果

具有三个层的前馈神经网络能够成功预测 48%患者的理想华法林剂量。神经网络模型分别解释了在推导和验证队列中患者之间观察到的剂量变异性的 48%和 43%。ANN 分析确定了华法林剂量的几个预测因子,包括种族;年龄;身高;体重;细胞色素 P450(CYP)2C9 基因型;VKORC1 基因型;磺胺类、唑类抗真菌药或大环内酯类药物的使用;卡马西平、苯妥英钠或利福平的使用;以及胺碘酮的使用。

结论

应用 ANN 开发了华法林给药算法。所提出的给药算法有可能推荐接近适当剂量的华法林剂量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验