Suppr超能文献

药物流行病学中的人工智能:系统评价。第1部分——人工智能中的知识发现技术概述。

Artificial Intelligence in Pharmacoepidemiology: A Systematic Review. Part 1-Overview of Knowledge Discovery Techniques in Artificial Intelligence.

作者信息

Sessa Maurizio, Khan Abdul Rauf, Liang David, Andersen Morten, Kulahci Murat

机构信息

Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.

Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark.

出版信息

Front Pharmacol. 2020 Jul 16;11:1028. doi: 10.3389/fphar.2020.01028. eCollection 2020.

Abstract

AIM

To perform a systematic review on the application of artificial intelligence (AI) based knowledge discovery techniques in pharmacoepidemiology.

STUDY ELIGIBILITY CRITERIA

Clinical trials, meta-analyses, narrative/systematic review, and observational studies using (or mentioning articles using) artificial intelligence techniques were eligible. Articles without a full text available in the English language were excluded.

DATA SOURCES

Articles recorded from 1950/01/01 to 2019/05/06 in Ovid MEDLINE were screened.

PARTICIPANTS

Studies including humans (real or simulated) exposed to a drug.

RESULTS

In total, 72 original articles and 5 reviews were identified Ovid MEDLINE. Twenty different knowledge discovery methods were identified, mainly from the area of machine learning (66/72; 91.7%). Classification/regression (44/72; 61.1%), classification/regression + model optimization (13/72; 18.0%), and classification/regression + features selection (12/72; 16.7%) were the three most frequent tasks in reviewed literature that machine learning methods has been applied to solve. The top three used techniques were artificial neural networks, random forest, and support vector machines models.

CONCLUSIONS

The use of knowledge discovery techniques of artificial intelligence techniques has increased exponentially over the years covering numerous sub-topics of pharmacoepidemiology.

SYSTEMATIC REVIEW REGISTRATION

Systematic review registration number in PROSPERO: CRD42019136552.

摘要

目的

对基于人工智能(AI)的知识发现技术在药物流行病学中的应用进行系统评价。

研究纳入标准

使用(或提及使用)人工智能技术的临床试验、荟萃分析、叙述性/系统评价及观察性研究符合要求。排除无英文全文的文章。

数据来源

筛选1950年1月1日至2019年5月6日在Ovid MEDLINE中记录的文章。

研究对象

包括暴露于药物的人类(真实或模拟)的研究。

结果

在Ovid MEDLINE中总共识别出72篇原创文章和5篇综述。识别出20种不同的知识发现方法,主要来自机器学习领域(66/72;91.7%)。分类/回归(44/72;61.1%)、分类/回归+模型优化(13/72;18.0%)以及分类/回归+特征选择(12/72;16.7%)是综述文献中机器学习方法应用于解决的最常见的三项任务。使用最多的三项技术是人工神经网络、随机森林和支持向量机模型。

结论

多年来,人工智能技术的知识发现技术的应用呈指数增长,涵盖了药物流行病学的众多子主题。

系统评价注册

PROSPERO中的系统评价注册号:CRD42019136552。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验