Department of Biological Chemistry and the Center for Bioengineering, The Edmond and Lily Safra Center for Brain Science, The Hebrew University of Jerusalem Jerusalem, Israel.
Front Mol Neurosci. 2014 Feb 10;7:9. doi: 10.3389/fnmol.2014.00009. eCollection 2014.
MicroRNAs (miRNAs) can notably control many targets each and regulate entire cellular pathways, but whether miRNAs can regulate complete neurotransmission processes is largely unknown. Here, we report that miRNAs with complementary sequence motifs to the key genes involved in acetylcholine (ACh) synthesis and/or packaging show massive overlap with those regulating ACh degradation. To address this topic, we first searched for miRNAs that could target the 3'-untranslated regions of the choline acetyltransferase (ChAT) gene that controls ACh synthesis; the vesicular ACh transporter (VAChT), encoded from an intron in the ChAT gene and the ACh hydrolyzing genes acetyl- and/or butyrylcholinesterase (AChE, BChE). Intriguingly, we found that many of the miRNAs targeting these genes are primate-specific, and that changes in their levels associate with inflammation, anxiety, brain damage, cardiac, neurodegenerative, or pain-related syndromes. To validate the in vivo relevance of this dual interaction, we selected the evolutionarily conserved miR-186, which targets both the stress-inducible soluble "readthrough" variant AChE-R and the major peripheral cholinesterase BChE. We exposed mice to predator scent stress and searched for potential associations between consequent changes in their miR-186, AChE-R, and BChE levels. Both intestinal miR-186 as well as BChE and AChE-R activities were conspicuously elevated 1 week post-exposure, highlighting the previously unknown involvement of miR-186 and BChE in psychological stress responses. Overlapping miRNA regulation emerges from our findings as a recently evolved surveillance mechanism over cholinergic neurotransmission in health and disease; and the corresponding miRNA details and disease relevance may serve as a useful resource for studying the molecular mechanisms underlying this surveillance.
微小 RNA(miRNAs)可以显著地调控许多靶标,并调控整个细胞通路,但 miRNAs 是否可以调控完整的神经递质传递过程在很大程度上仍是未知的。在这里,我们报告了与参与乙酰胆碱(ACh)合成和/或包装的关键基因具有互补序列基序的 miRNAs 与调节 ACh 降解的 miRNAs 有大量重叠。为了解决这个问题,我们首先搜索了可以靶向控制 ACh 合成的胆碱乙酰转移酶(ChAT)基因 3'非翻译区的 miRNAs;编码自 ChAT 基因内含子的囊泡 ACh 转运体(VAChT),以及 ACh 水解基因乙酰基和/或丁酰基胆碱酯酶(AChE、BChE)。有趣的是,我们发现许多靶向这些基因的 miRNAs 是灵长类动物特异性的,并且它们水平的变化与炎症、焦虑、脑损伤、心脏、神经退行性或与疼痛相关的综合征有关。为了验证这种双重相互作用的体内相关性,我们选择了进化上保守的 miR-186,它靶向应激诱导的可溶性“通读”变体 AChE-R 和主要的外周胆碱酯酶 BChE。我们让小鼠暴露于捕食者气味应激下,并寻找随后它们的 miR-186、AChE-R 和 BChE 水平变化之间的潜在关联。暴露后 1 周,肠道 miR-186 以及 BChE 和 AChE-R 活性明显升高,突出了 miR-186 和 BChE 以前未知的参与心理应激反应。我们的研究结果表明,重叠的 miRNA 调控是一种最近进化的在健康和疾病中的胆碱能神经传递的监视机制;相应的 miRNA 细节和疾病相关性可能作为研究这种监视的分子机制的有用资源。