Benishin C G, Sorensen R G, Brown W E, Krueger B K, Blaustein M P
Department of Physiology, University of Maryland School of Medicine, Baltimore 21201.
Mol Pharmacol. 1988 Aug;34(2):152-9.
Venom from the green mamba (Dendroaspis angusticeps) blocked 86Rb efflux through voltage-gated K channels in rat brain synaptosomes. Crude venom inhibited both rapidly inactivating, 4-aminopyridine-sensitive K channels, and noninactivating, phencyclidine-sensitive, K channels. Fractionation of the venom by size exclusion chromatography and cation exchange high performance liquid chromatography yielded four 7000-dalton polypeptides (designated alpha-, beta-, gamma-, and delta-DaTX) that blocked synaptosome K channels. Two of these toxins, alpha- and delta-DaTX (10-100 nM), preferentially blocked the inactivating voltage-gated K channels. The other two toxins, beta- and gamma-DaTX, preferentially blocked the noninactivating voltage-gated K channels. The amino acid composition of these four toxins indicated that alpha-DaTX is identical to dendrotoxin [Br. J. Pharmacol. 77:153-161 (1982)] and toxin C13S2C3 [Hoppe-Seyler's Z. Physiol. Chem. 361:661-674 (1980)]; the composition and partial sequence analysis indicate that delta-DaTX is identical to toxin C13S1C3 [Hoppe-Seyler's Z. Physiol. Chem. 361:661-674 (1980)]. Beta- and gamma-DaTX have not previously been identified. Partial amino acid sequences of beta- and gamma-DaTX and the published sequences of alpha- and delta-DaTX reveal that the C-terminal segments of all four toxins are homologous. The C-terminal segments are also homologous with a number of nontoxic proteinase inhibitors. This raises the possibility that the N-terminal rather than the C-terminal regions are more likely responsible for the K channel blocking activity. The N-terminal portions of alpha- and delta-DaTX have some sequence homologies, but they have no obvious homologies with either beta- or gamma-DaTX. The finding of structurally similar peptide toxins with preferential activities toward different K channels may lead to the development of useful probes of K channel structure and may provide the means to distinguish among different K channels biochemically as well as physiologically.
绿曼巴蛇(Dendroaspis angusticeps)的毒液可阻断大鼠脑突触体中通过电压门控钾通道的86Rb外流。粗毒液可抑制快速失活的、对4-氨基吡啶敏感的钾通道以及非失活的、对苯环利定敏感的钾通道。通过尺寸排阻色谱法和阳离子交换高效液相色谱法对毒液进行分级分离,得到了四种7000道尔顿的多肽(分别命名为α-、β-、γ-和δ-DaTX),它们可阻断突触体钾通道。其中两种毒素,α-和δ-DaTX(10 - 100 nM),优先阻断失活的电压门控钾通道。另外两种毒素,β-和γ-DaTX,优先阻断非失活的电压门控钾通道。这四种毒素的氨基酸组成表明,α-DaTX与树突毒素[《英国药理学期刊》77:153 - 161 (1982)]以及毒素C13S2C3[《霍佩-赛勒生理化学杂志》361:661 - 674 (1980)]相同;其组成和部分序列分析表明,δ-DaTX与毒素C13S1C3[《霍佩-赛勒生理化学杂志》361:661 - 674 (1980)]相同。β-和γ-DaTX此前尚未被鉴定。β-和γ-DaTX的部分氨基酸序列以及已发表的α-和δ-DaTX的序列显示,所有四种毒素的C末端片段是同源的。C末端片段也与许多无毒蛋白酶抑制剂同源。这就增加了一种可能性:N末端而非C末端区域更有可能是钾通道阻断活性的原因。α-和δ-DaTX的N末端部分有一些序列同源性,但它们与β-或γ-DaTX没有明显的同源性。发现对不同钾通道具有优先活性的结构相似的肽毒素,可能会促进开发有用的钾通道结构探针,并可能提供在生化和生理方面区分不同钾通道的方法。