Suppr超能文献

黎曼ζ函数零点、质数幂与量子混沌。

Zeta function zeros, powers of primes, and quantum chaos.

作者信息

Sakhr Jamal, Bhaduri Rajat K, van Zyl Brandon P

机构信息

Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada L8S 4M1.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Aug;68(2 Pt 2):026206. doi: 10.1103/PhysRevE.68.026206. Epub 2003 Aug 15.

Abstract

We present a numerical study of Riemann's formula for the oscillating part of the density of the primes and their integer powers. The formula consists of an infinite series of oscillatory terms, one for each zero of the zeta function on the critical line, and was derived by Riemann in his paper on primes, assuming the Riemann hypothesis. We show that high-resolution spectral lines can be generated by the truncated series at all integer powers of primes and demonstrate explicitly that the relative line intensities are correct. We then derive a Gaussian sum rule for Riemann's formula. This is used to analyze the numerical convergence of the truncated series. The connections to quantum chaos and semiclassical physics are discussed.

摘要

我们给出了关于素数及其整数次幂密度振荡部分的黎曼公式的数值研究。该公式由一系列无穷振荡项组成,临界线上的每个黎曼ζ函数零点对应一项,它是黎曼在其关于素数的论文中在假设黎曼假设的情况下推导出来的。我们表明,截断级数可以在素数的所有整数次幂处生成高分辨率谱线,并明确证明相对谱线强度是正确的。然后我们推导了黎曼公式的高斯求和规则。这用于分析截断级数的数值收敛性。还讨论了与量子混沌和半经典物理的联系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验