Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary.
Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
Phys Rev Lett. 2014 Feb 21;112(7):073601. doi: 10.1103/PhysRevLett.112.073601. Epub 2014 Feb 20.
We generalize the Power-Zineau-Woolley transformation to obtain a canonical Hamiltonian of cavity quantum electrodynamics for arbitrary geometry of boundaries. This Hamiltonian is free from the A-square term and the instantaneous Coulomb interaction between distinct atoms. The single-mode models of cavity QED (Dicke, Tavis-Cummings, Jaynes-Cummings) are justified by a term by term mapping to the proposed microscopic Hamiltonian. As one straightforward consequence, the basis of no-go argumentations concerning the Dicke phase transition with atoms in electromagnetic fields dissolves.
我们推广了 Power-Zineau-Woolley 变换,以获得任意边界几何形状的腔量子电动力学的正则哈密顿量。这个哈密顿量没有 A 平方项和不同原子之间的瞬时库仑相互作用。腔 QED(Dicke、Tavis-Cummings、Jaynes-Cummings)的单模模型通过逐项映射到所提出的微观哈密顿量得到了证明。作为一个直接的结果,关于电磁场中原子的 Dicke 相变的不可行性论证的基础消失了。