Chen Shihua, Grelu Philippe, Soto-Crespo J M
Department of Physics, Southeast University, Nanjing 211189, China.
Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR No. 6303 associée au CNRS, Université de Bourgogne, 9 avenue A. Savary, BP 47870, Dijon Cedex 21078, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jan;89(1):011201. doi: 10.1103/PhysRevE.89.011201. Epub 2014 Jan 6.
Exact explicit rogue-wave solutions of intricate structures are presented for the long-wave-short-wave resonance equation. These vector parametric solutions feature coupled dark- and bright-field counterparts of the Peregrine soliton. Numerical simulations show the robustness of dark and bright rogue waves in spite of the onset of modulational instability. Dark fields originate from the complex interplay between anomalous dispersion and the nonlinearity driven by the coupled long wave. This unusual mechanism, not available in scalar nonlinear wave equation models, can provide a route to the experimental realization of dark rogue waves in, for instance, negative index media or with capillary-gravity waves.
给出了长波-短波共振方程复杂结构的精确显式 rogue 波解。这些矢量参数解具有 Peregrine 孤子的耦合暗场和亮场对应物。数值模拟表明,尽管出现了调制不稳定性,但暗 rogue 波和亮 rogue 波仍具有鲁棒性。暗场源于反常色散与耦合长波驱动的非线性之间的复杂相互作用。这种标量非线性波动方程模型中不存在的特殊机制,可为例如在负折射率介质或毛细重力波中实验实现暗 rogue 波提供一条途径。