Kao Hsien-Ching, Beaume Cédric, Knobloch Edgar
Wolfram Research Inc., Champaign, Illinois 61820, USA.
Department of Physics, University of California, Berkeley, California 94720, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jan;89(1):012903. doi: 10.1103/PhysRevE.89.012903. Epub 2014 Jan 6.
We study spatial localization in the generalized Swift-Hohenberg equation with either quadratic-cubic or cubic-quintic nonlinearity subject to spatially heterogeneous forcing. Different types of forcing (sinusoidal or Gaussian) with different spatial scales are considered and the corresponding localized snaking structures are computed. The results indicate that spatial heterogeneity exerts a significant influence on the location of spatially localized structures in both parameter space and physical space, and on their stability properties. The results are expected to assist in the interpretation of experiments on localized structures where departures from spatial homogeneity are generally unavoidable.
我们研究了具有二次 - 三次或三次 - 五次非线性且受空间非均匀强迫作用的广义Swift - Hohenberg方程中的空间局域化。考虑了具有不同空间尺度的不同类型的强迫(正弦或高斯),并计算了相应的局域蜿蜒结构。结果表明,空间非均匀性对参数空间和物理空间中空间局域结构的位置及其稳定性特性都有显著影响。预期这些结果将有助于解释关于局域结构的实验,在这类实验中偏离空间均匀性通常是不可避免的。