Suppr超能文献

具有振荡侧壁的快速旋转圆柱流。

Rapidly rotating cylinder flow with an oscillating sidewall.

作者信息

Lopez Juan M, Marques Francisco

机构信息

School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona 85287, USA.

Department of Física Aplicada, Universitat Politècnica de Catalanya, Girona s/n, Mòdul B4 Campus Nord, 08034 Barcelona, Spain.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jan;89(1):013013. doi: 10.1103/PhysRevE.89.013013. Epub 2014 Jan 17.

Abstract

We present numerical simulations of a flow in a rapidly rotating cylinder subjected to a time-periodic forcing via axial oscillations of the sidewall. When the axial oscillation frequency is less than twice the rotation frequency, inertial waves in the form of shear layers are present. For very fast rotations, these waves approach the form of the characteristics predicted from the linearized inviscid problem first studied by Lord Kelvin. The driving mechanism for the inertial waves is the oscillating Stokes layer on the sidewall and the corner discontinuities where the sidewall meets the top and bottom end walls. A detailed numerical and theoretical analysis of the internal shear layers is presented. The system is physically realizable, and attractive because of the robustness of the Stokes layer that drives the inertial waves but beyond that does not interfere with them. We show that the system loses stability to complicated three-dimensional flow when the sidewall oscillation displacement amplitude is very large (of the order of the cylinder radius), but this is far removed from the displacement amplitudes of interest, and there is a large range of governing parameters which are physically realizable in experiments in which the inertial waves are robust. This is in contrast to many other physical realizations of inertial waves where the driving mechanisms tend to lead to instabilities and complicate the study of the waves. We have computed the response diagram of the system for a large range of forcing frequencies and compared the results with inviscid eigenmodes and ray tracing techniques.

摘要

我们给出了一个快速旋转圆柱体内流动的数值模拟,该流动通过侧壁的轴向振荡受到时间周期性外力作用。当轴向振荡频率小于旋转频率的两倍时,会出现以剪切层形式存在的惯性波。对于非常快速的旋转,这些波接近由开尔文勋爵首先研究的线性无粘问题所预测的特征形式。惯性波的驱动机制是侧壁上振荡的斯托克斯层以及侧壁与顶部和底部端壁相交处的角部间断。本文对内部剪切层进行了详细的数值和理论分析。该系统在物理上是可实现的,并且具有吸引力,因为驱动惯性波的斯托克斯层具有鲁棒性,而且除此之外不会对其产生干扰。我们表明,当侧壁振荡位移幅度非常大(达到圆柱半径的量级)时,系统会失去对复杂三维流动的稳定性,但这与感兴趣的位移幅度相差甚远,并且存在大范围的控制参数,在惯性波很强的实验中这些参数在物理上是可实现的。这与惯性波的许多其他物理实现情况形成对比,在那些情况下驱动机制往往会导致不稳定性并使波的研究变得复杂。我们计算了系统在大范围强迫频率下的响应图,并将结果与无粘本征模和射线追踪技术进行了比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验