Ticknor C, Herring S D, Lambert F, Collins L A, Kress J D
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
CEA, DAM, DIF, F-91297 Arpajon, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jan;89(1):013108. doi: 10.1103/PhysRevE.89.013108. Epub 2014 Jan 27.
We have performed nonequilibrium classical and quantum-mechanical molecular dynamics simulations that follow the interpenetration of deuterium-tritium (DT) and carbon (C) components through an interface initially in hydrostatic and thermal equilibrium. We concentrate on the warm, dense matter regime with initial densities of 2.5-5.5 g/cm3 and temperatures from 10 to 100 eV. The classical treatment employs a Yukawa pair-potential with the parameters adjusted to the plasma conditions, and the quantum treatment rests on an orbital-free density functional theory at the Thomas-Fermi-Dirac level. For times greater than about a picosecond, the component concentrations evolve in accordance with Fick's law for a classically diffusing fluid with the motion, though, described by the mutual diffusion coefficient of the mixed system rather than the self-diffusion of the individual components. For shorter times, microscopic processes control the clearly non-Fickian dynamics and require a detailed representation of the electron probability density in space and time.
我们进行了非平衡经典和量子力学分子动力学模拟,该模拟追踪氘 - 氚(DT)和碳(C)组分通过最初处于流体静力学和热平衡的界面的相互渗透。我们专注于初始密度为2.5 - 5.5 g/cm³且温度为10至100 eV的温稠密物质状态。经典处理采用了经参数调整以适应等离子体条件的 Yukawa 对势,而量子处理基于托马斯 - 费米 - 狄拉克水平的无轨道密度泛函理论。对于大于约1皮秒的时间,组分浓度根据菲克定律演化,适用于具有扩散运动的经典扩散流体,不过,运动由混合系统的互扩散系数描述,而非单个组分的自扩散系数。对于更短的时间,微观过程控制着明显非菲克的动力学,并且需要在空间和时间上详细表示电子概率密度。