Suppr超能文献

用于改进非线性动态判别分析的递归图中局部复杂结构的表征

Characterization of local complex structures in a recurrence plot to improve nonlinear dynamic discriminant analysis.

作者信息

Ding Hang

机构信息

The Australian e-Health Research Centre, CSIRO. Level 5, UQ Health Sciences Building 901/16, Royal Brisbane and Women's Hospital, Herston, Queensland 4029, Australia.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jan;89(1):013313. doi: 10.1103/PhysRevE.89.013313. Epub 2014 Jan 31.

Abstract

Structures in recurrence plots (RPs), preserving the rich information of nonlinear invariants and trajectory characteristics, have been increasingly analyzed in dynamic discrimination studies. The conventional analysis of RPs is mainly focused on quantifying the overall diagonal and vertical line structures through a method, called recurrence quantification analysis (RQA). This study extensively explores the information in RPs by quantifying local complex RP structures. To do this, an approach was developed to analyze the combination of three major RQA variables: determinism, laminarity, and recurrence rate (DLR) in a metawindow moving over a RP. It was then evaluated in two experiments discriminating (1) ideal nonlinear dynamic series emulated from the Lorenz system with different control parameters and (2) data sets of human heart rate regulations with normal sinus rhythms (n = 18) and congestive heart failure (n = 29). Finally, the DLR was compared with seven major RQA variables in terms of discriminatory power, measured by standardized mean difference (DSMD). In the two experiments, DLR resulted in the highest discriminatory power with DSMD = 2.53 and 0.98, respectively, which were 7.41 and 2.09 times the best performance from RQA. The study also revealed that the optimal RP structures for the discriminations were neither typical diagonal structures nor vertical structures. These findings indicate that local complex RP structures contain some rich information unexploited by RQA. Therefore, future research to extensively analyze complex RP structures would potentially improve the effectiveness of the RP analysis in dynamic discrimination studies.

摘要

递归图(RP)中的结构保留了非线性不变量和轨迹特征的丰富信息,在动态判别研究中受到越来越多的分析。传统的递归图分析主要集中在通过一种称为递归量化分析(RQA)的方法来量化整体对角线和垂直线结构。本研究通过量化局部复杂的递归图结构来广泛探索递归图中的信息。为此,开发了一种方法来分析在递归图上移动的元窗口中三个主要递归量化分析变量的组合:确定性、层流性和递归率(DLR)。然后在两个实验中对其进行评估,这两个实验分别是区分(1)由具有不同控制参数的洛伦兹系统模拟的理想非线性动态序列,以及(2)正常窦性心律(n = 18)和充血性心力衰竭(n = 29)的人类心率调节数据集。最后,根据通过标准化平均差(DSMD)测量的判别力,将DLR与七个主要递归量化分析变量进行比较。在这两个实验中,DLR分别产生了最高的判别力,DSMD分别为2.53和0.98,分别是递归量化分析最佳性能的7.41倍和2.09倍。该研究还表明,用于判别的最佳递归图结构既不是典型的对角线结构也不是垂直结构。这些发现表明,局部复杂的递归图结构包含一些递归量化分析未开发的丰富信息。因此,未来广泛分析复杂递归图结构的研究可能会提高递归图分析在动态判别研究中的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验